-5 -5 1 [ f(x) dx = 3, •[ 9(x)dx = 5 6 -6 Let f and g be continuous functions. If

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
Let \( f \) and \( g \) be continuous functions. If

\[
\int_{-6}^{-5} f(x) dx = 3, \quad \int_{-6}^{-5} g(x) dx = 5
\]

and \( D \) is the rectangle: \(-6 \leq x \leq -5, \, -6 \leq y \leq -5\),

then

\[
\iint_D f(x)g(y) \, dA = 
\]

### Explanation of the Problem

This problem involves the evaluation of a double integral over a rectangular region \( D \). The functions \( f \) and \( g \) are given as continuous, and we are given the integral of each over a specified interval. Specifically, we are looking for the value of the integral:

\[
\iint_D f(x)g(y) \, dA
\]

### Evaluation Steps

1. **Integral of \( f(x) \):** We know that the integral of \( f(x) \) from \(-6\) to \(-5\) is 3:
   \[
   \int_{-6}^{-5} f(x) \, dx = 3
   \]

2. **Integral of \( g(y) \):** We are also given that the integral of \( g(y) \) from \(-6\) to \(-5\) is 5:
   \[
   \int_{-6}^{-5} g(y) \, dy = 5
   \]

3. **Double Integral \( \iint_D f(x)g(y) \, dA \):** To find the double integral over the region \( D \), we utilize the fact that:
   \[
   \iint_D f(x)g(y) \, dA = \left( \int_{-6}^{-5} f(x) \, dx \right) \times \left( \int_{-6}^{-5} g(y) \, dy \right)
   \]

4. **Final Calculation:** Plug in the values:
   \[
   \iint_D f(x)g(y) \, dA = 3 \times 5 = 15
   \]

Therefore, the value of the double integral is \( \boxed{15
Transcribed Image Text:Let \( f \) and \( g \) be continuous functions. If \[ \int_{-6}^{-5} f(x) dx = 3, \quad \int_{-6}^{-5} g(x) dx = 5 \] and \( D \) is the rectangle: \(-6 \leq x \leq -5, \, -6 \leq y \leq -5\), then \[ \iint_D f(x)g(y) \, dA = \] ### Explanation of the Problem This problem involves the evaluation of a double integral over a rectangular region \( D \). The functions \( f \) and \( g \) are given as continuous, and we are given the integral of each over a specified interval. Specifically, we are looking for the value of the integral: \[ \iint_D f(x)g(y) \, dA \] ### Evaluation Steps 1. **Integral of \( f(x) \):** We know that the integral of \( f(x) \) from \(-6\) to \(-5\) is 3: \[ \int_{-6}^{-5} f(x) \, dx = 3 \] 2. **Integral of \( g(y) \):** We are also given that the integral of \( g(y) \) from \(-6\) to \(-5\) is 5: \[ \int_{-6}^{-5} g(y) \, dy = 5 \] 3. **Double Integral \( \iint_D f(x)g(y) \, dA \):** To find the double integral over the region \( D \), we utilize the fact that: \[ \iint_D f(x)g(y) \, dA = \left( \int_{-6}^{-5} f(x) \, dx \right) \times \left( \int_{-6}^{-5} g(y) \, dy \right) \] 4. **Final Calculation:** Plug in the values: \[ \iint_D f(x)g(y) \, dA = 3 \times 5 = 15 \] Therefore, the value of the double integral is \( \boxed{15
Expert Solution
Step 1

Calculus homework question answer, step 1, image 1

trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning