(4b) 6. (20%) Find the Laplace Transform F(s) = of f(t) if f(t) = 1. Hence find (f(t)) F(s) = L (f(t)) = L (1) = ] e¯*f (t)dt = √ e¯™ª.1 dt = √ e™ªdt 0 d if (e') = e² dt { e'dt = e' (6a) (6b) (6c)
(4b) 6. (20%) Find the Laplace Transform F(s) = of f(t) if f(t) = 1. Hence find (f(t)) F(s) = L (f(t)) = L (1) = ] e¯*f (t)dt = √ e¯™ª.1 dt = √ e™ªdt 0 d if (e') = e² dt { e'dt = e' (6a) (6b) (6c)
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![(4b)
6. (20%) Find the Laplace Transform
F(s) =
of f(t) if f(t) = 1.
Hence find
(f(t))
F(s) = L (f(t)) = L (1) = ] e¯*f (t)dt = √ e¯™ª.1 dt = √ e™ªdt
0
d
if
(e') = e²
dt
{ e'dt = e'
(6a)
(6b)
(6c)](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F1f1b6c9e-2fed-4e74-93fe-39c8623bed2a%2F7817b6b8-e382-4485-a2b9-56bbb786dc10%2Fdv9r85q_processed.jpeg&w=3840&q=75)
Transcribed Image Text:(4b)
6. (20%) Find the Laplace Transform
F(s) =
of f(t) if f(t) = 1.
Hence find
(f(t))
F(s) = L (f(t)) = L (1) = ] e¯*f (t)dt = √ e¯™ª.1 dt = √ e™ªdt
0
d
if
(e') = e²
dt
{ e'dt = e'
(6a)
(6b)
(6c)
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)