Algebra and Trigonometry (6th Edition)
6th Edition
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:Robert F. Blitzer
ChapterP: Prerequisites: Fundamental Concepts Of Algebra
Section: Chapter Questions
Problem 1MCCP: In Exercises 1-25, simplify the given expression or perform the indicated operation (and simplify,...
Related questions
Question
491,492,493,494
![Here is a transcription and explanation of the mathematical expressions displayed in the image, which will be useful for educational purposes focused on exponents and algebraic expressions.
491. \( x^3 \cdot x^4 \)
492. \( \frac{5^6}{5^8} \)
493. \( (47a^{18}b^{23}c^5)^0 \)
494. \( 4^{-1} \)
495. \( (2y)^{-3} \)
496. \( p^{-3} \cdot p^8 \)
497. \( \frac{x^4}{x^5} \)
498. \( (3x^{-3})^2 \)
499. \( \frac{24r^3s^5}{6r^2s^7} \)
500. \( \left(\frac{x^4y^9}{x^3}\right)^2 \)
### Explanation of Expressions:
1. **Simplifying Exponents:**
- Problems like 491, 496, and 497 involve using properties of exponents to simplify expressions. For example, in 491, when multiplying like bases, you add the exponents.
2. **Power of a Power:**
- Problems like 493 and 495 involve applying the power of a power property, where you multiply the exponents.
3. **Negative Exponents:**
- Problems 494, 495, and 498 involve expressions with negative exponents. These should be rewritten as fractions to simplify.
4. **Division of Exponents:**
- Problems 492 and 497 involve dividing expressions with the same base, requiring subtracting the exponents.
5. **Complex Fractions:**
- Problem 499 involves both division of coefficients and application of exponent rules when simplifying a fraction.
These problems are representative examples of applying exponent rules in algebra. Understanding how to manipulate exponents is crucial for simplifying complex algebraic expressions.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F39f8eda8-4420-4bda-ab27-1b53a7c9ec36%2Fbf2940d9-6a93-4e22-b42b-fa557977ab83%2Ffwzo7yc_processed.jpeg&w=3840&q=75)
Transcribed Image Text:Here is a transcription and explanation of the mathematical expressions displayed in the image, which will be useful for educational purposes focused on exponents and algebraic expressions.
491. \( x^3 \cdot x^4 \)
492. \( \frac{5^6}{5^8} \)
493. \( (47a^{18}b^{23}c^5)^0 \)
494. \( 4^{-1} \)
495. \( (2y)^{-3} \)
496. \( p^{-3} \cdot p^8 \)
497. \( \frac{x^4}{x^5} \)
498. \( (3x^{-3})^2 \)
499. \( \frac{24r^3s^5}{6r^2s^7} \)
500. \( \left(\frac{x^4y^9}{x^3}\right)^2 \)
### Explanation of Expressions:
1. **Simplifying Exponents:**
- Problems like 491, 496, and 497 involve using properties of exponents to simplify expressions. For example, in 491, when multiplying like bases, you add the exponents.
2. **Power of a Power:**
- Problems like 493 and 495 involve applying the power of a power property, where you multiply the exponents.
3. **Negative Exponents:**
- Problems 494, 495, and 498 involve expressions with negative exponents. These should be rewritten as fractions to simplify.
4. **Division of Exponents:**
- Problems 492 and 497 involve dividing expressions with the same base, requiring subtracting the exponents.
5. **Complex Fractions:**
- Problem 499 involves both division of coefficients and application of exponent rules when simplifying a fraction.
These problems are representative examples of applying exponent rules in algebra. Understanding how to manipulate exponents is crucial for simplifying complex algebraic expressions.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Algebra and Trigonometry (6th Edition)](https://www.bartleby.com/isbn_cover_images/9780134463216/9780134463216_smallCoverImage.gif)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
![Contemporary Abstract Algebra](https://www.bartleby.com/isbn_cover_images/9781305657960/9781305657960_smallCoverImage.gif)
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
![Linear Algebra: A Modern Introduction](https://www.bartleby.com/isbn_cover_images/9781285463247/9781285463247_smallCoverImage.gif)
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
![Algebra and Trigonometry (6th Edition)](https://www.bartleby.com/isbn_cover_images/9780134463216/9780134463216_smallCoverImage.gif)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
![Contemporary Abstract Algebra](https://www.bartleby.com/isbn_cover_images/9781305657960/9781305657960_smallCoverImage.gif)
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
![Linear Algebra: A Modern Introduction](https://www.bartleby.com/isbn_cover_images/9781285463247/9781285463247_smallCoverImage.gif)
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
![Algebra And Trigonometry (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780135163078/9780135163078_smallCoverImage.gif)
Algebra And Trigonometry (11th Edition)
Algebra
ISBN:
9780135163078
Author:
Michael Sullivan
Publisher:
PEARSON
![Introduction to Linear Algebra, Fifth Edition](https://www.bartleby.com/isbn_cover_images/9780980232776/9780980232776_smallCoverImage.gif)
Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:
9780980232776
Author:
Gilbert Strang
Publisher:
Wellesley-Cambridge Press
![College Algebra (Collegiate Math)](https://www.bartleby.com/isbn_cover_images/9780077836344/9780077836344_smallCoverImage.gif)
College Algebra (Collegiate Math)
Algebra
ISBN:
9780077836344
Author:
Julie Miller, Donna Gerken
Publisher:
McGraw-Hill Education