47. h(a + B) 48. h (α-β) In Problems 49-74, establish each identity. \49. sin + 0 = = -sin 0 50. cos = cos 0 53. sin (T + 0) = -sin 0 52. cos ( - 0) = - cos 0 56. tan (27 - 0) = -tan 0 35. tan (-0) = -tan 0 3m + e = sin 0 58. cos 59. sin (a + B) + sin (a – B) = 2 sin a

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Topic Video
Question
49,55
In Problems 13-24, find the exact value of each expression.
In Problems 25-34, find the exact value of each expression.
Skill Building
TT
14. sin 105°
15. tan 15°
18. sin
12
\3 cos 165°
16. tan 195°
17. sin
12
7T
\ 19. cos 12
20. tan
12
17
21. sin
197
22. tan
12
24. cot
12
23. sec
12
15. sin 20° cos 10° + cos 20° sin 10°
26. sin 20° cos 80° - cos 20° sin 80°
\ 27. cos 70° cos 20° - sin 70° sin 20°
28. cos 40° cos 10° + sin 40° sin 10
tan 20° + tan 25°
29. 1- tan 20° tan 25°
tan 40° - tan 10°
30.
1 + tan 40° tan 10°
77
5m
32. cos
cs
12
- cos
\31. sin 12
cos
12
sin
12
12
- sin
sin
12
12
12
5m
5m
cos
18
+ sin
sin
34. sin
18
33. cos
12 COS
12
12
12
+ cos
sin
18
18
le Problems 35–40, find the exact value of each of the following under the given conditions:
(a) sin (a + B)
(b) cos (a + B)
(c) sin (a - B)
(d) tan (a - B)
2V5
cos B =
V5
36. cos a =
5
4
응0<a<플 sing=
\ 35. sin a =
0 < a <
<B<0
2
5'
4 7
" <a < T; cos B =
1
3T
1
,T<B<
37. tan a = -
3 2
38. tan a =
T < a <
12
sin B =
5
39. sin a =
13
1
40. cos a =
< a < -T;
tan B = -
<B < T
< a < 0; sin B =
2
1
,0 in quadrant II, find the exact value of:
1
O in quadrant IV, find the exact value of:
41. If sin 0 =
42. If cos e =
4
(a) cos 0
(a) sin 0
(b)
(b) sinj 0 -
(c) cosl 0 -
(c) cos
(d) tan
+1
(d) tan
0 --
In Problems 43–48, use the figures to evaluate each function if f (x) = sin x, g (x) = cos x, and h (x) = tan x.
43. f(a + B)
44. g (α + β)
y
45. g(a - B)
x2 + y2 = 4
x2 + y2 = 1
46. f(α-β)
(x, 1)
47. h(a + B)
48. h (α -β)
In Problems 49-74, establish each identity.
49. sin
+ 6
= cos 0
50. cos
+0 = -sin 0
51. sin (7 – 0) = sin 0
52. cos (7 - A) = - cos 0
53. sin (T + 0) = -sin 0
54. cos (7 + 0) = -cos 0
55. tan (7 - 0) = - tan 0
56. tan (27 - 0) = -tan 0
57. sin
3m
58. cos
= - cos 0
= sin 0
59. sin (a + B) + sin(a – B) = 2 sin a cos ß
Transcribed Image Text:In Problems 13-24, find the exact value of each expression. In Problems 25-34, find the exact value of each expression. Skill Building TT 14. sin 105° 15. tan 15° 18. sin 12 \3 cos 165° 16. tan 195° 17. sin 12 7T \ 19. cos 12 20. tan 12 17 21. sin 197 22. tan 12 24. cot 12 23. sec 12 15. sin 20° cos 10° + cos 20° sin 10° 26. sin 20° cos 80° - cos 20° sin 80° \ 27. cos 70° cos 20° - sin 70° sin 20° 28. cos 40° cos 10° + sin 40° sin 10 tan 20° + tan 25° 29. 1- tan 20° tan 25° tan 40° - tan 10° 30. 1 + tan 40° tan 10° 77 5m 32. cos cs 12 - cos \31. sin 12 cos 12 sin 12 12 - sin sin 12 12 12 5m 5m cos 18 + sin sin 34. sin 18 33. cos 12 COS 12 12 12 + cos sin 18 18 le Problems 35–40, find the exact value of each of the following under the given conditions: (a) sin (a + B) (b) cos (a + B) (c) sin (a - B) (d) tan (a - B) 2V5 cos B = V5 36. cos a = 5 4 응0<a<플 sing= \ 35. sin a = 0 < a < <B<0 2 5' 4 7 " <a < T; cos B = 1 3T 1 ,T<B< 37. tan a = - 3 2 38. tan a = T < a < 12 sin B = 5 39. sin a = 13 1 40. cos a = < a < -T; tan B = - <B < T < a < 0; sin B = 2 1 ,0 in quadrant II, find the exact value of: 1 O in quadrant IV, find the exact value of: 41. If sin 0 = 42. If cos e = 4 (a) cos 0 (a) sin 0 (b) (b) sinj 0 - (c) cosl 0 - (c) cos (d) tan +1 (d) tan 0 -- In Problems 43–48, use the figures to evaluate each function if f (x) = sin x, g (x) = cos x, and h (x) = tan x. 43. f(a + B) 44. g (α + β) y 45. g(a - B) x2 + y2 = 4 x2 + y2 = 1 46. f(α-β) (x, 1) 47. h(a + B) 48. h (α -β) In Problems 49-74, establish each identity. 49. sin + 6 = cos 0 50. cos +0 = -sin 0 51. sin (7 – 0) = sin 0 52. cos (7 - A) = - cos 0 53. sin (T + 0) = -sin 0 54. cos (7 + 0) = -cos 0 55. tan (7 - 0) = - tan 0 56. tan (27 - 0) = -tan 0 57. sin 3m 58. cos = - cos 0 = sin 0 59. sin (a + B) + sin(a – B) = 2 sin a cos ß
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Discrete Probability Distributions
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning