45. Prove: If the diagonals of a trapezoid are congru- ent, then it is an isosceles trapezoid.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Topic Video
Question
Help with 45?
**Problem Set 5.4**

---

**Problems:**

**33.** Find the length of the legs in the following isosceles trapezoid. Round to the nearest hundredth.

Diagram: A trapezoid with bases 6 inches and 10 inches, and height 4 inches.

**34.** Find the area of the following isosceles trapezoid. Round to the nearest tenth.

Diagram: A trapezoid with bases 7.8 meters and 8.5 meters, and height 10.6 meters.

**35.** In isosceles trapezoid \( EFGH \), \( EF = 20'' \), \( FG = 25'' \), and \(\angle H = 60^\circ\). Find \( EH \).

Diagram: Not included.

**36.** \( PQRS \) is an isosceles trapezoid. If \(\angle TRS = 100^\circ\), \(\angle T = 35^\circ\), and \( PS = TS \), find the measures of the numbered angles.

Diagram: A trapezoid with angles marked as \(4^\circ\), \(3^\circ\), etc.

**37.** In isosceles trapezoid \( WXYZ \), \( XP = 5 \) in., \( YZ = 12 \) in., \( XZ \perp WX \), and \( WY \perp YZ \). Find \( WZ \).

Diagram: Trapezoid with diagonals intersecting at point P.

---

**Proofs:**

**39.** Prove: A square is a rhombus with one right angle.

**40.** Prove: A square is a rectangle with two adjacent sides congruent.

**41.** Prove: A square is a rhombus with congruent diagonals.

**42.** Prove: A square is a rectangle with perpendicular diagonals.

**43.** Prove: A parallelogram with one right angle is a rectangle (Theorem 5.27).

**44.** Prove: The diagonals of an isosceles trapezoid are congruent.

**45.** Prove: If the diagonals of a trapezoid are congruent, then it is an isosceles trapezoid.

**46.** In parallelogram \(
Transcribed Image Text:**Problem Set 5.4** --- **Problems:** **33.** Find the length of the legs in the following isosceles trapezoid. Round to the nearest hundredth. Diagram: A trapezoid with bases 6 inches and 10 inches, and height 4 inches. **34.** Find the area of the following isosceles trapezoid. Round to the nearest tenth. Diagram: A trapezoid with bases 7.8 meters and 8.5 meters, and height 10.6 meters. **35.** In isosceles trapezoid \( EFGH \), \( EF = 20'' \), \( FG = 25'' \), and \(\angle H = 60^\circ\). Find \( EH \). Diagram: Not included. **36.** \( PQRS \) is an isosceles trapezoid. If \(\angle TRS = 100^\circ\), \(\angle T = 35^\circ\), and \( PS = TS \), find the measures of the numbered angles. Diagram: A trapezoid with angles marked as \(4^\circ\), \(3^\circ\), etc. **37.** In isosceles trapezoid \( WXYZ \), \( XP = 5 \) in., \( YZ = 12 \) in., \( XZ \perp WX \), and \( WY \perp YZ \). Find \( WZ \). Diagram: Trapezoid with diagonals intersecting at point P. --- **Proofs:** **39.** Prove: A square is a rhombus with one right angle. **40.** Prove: A square is a rectangle with two adjacent sides congruent. **41.** Prove: A square is a rhombus with congruent diagonals. **42.** Prove: A square is a rectangle with perpendicular diagonals. **43.** Prove: A parallelogram with one right angle is a rectangle (Theorem 5.27). **44.** Prove: The diagonals of an isosceles trapezoid are congruent. **45.** Prove: If the diagonals of a trapezoid are congruent, then it is an isosceles trapezoid. **46.** In parallelogram \(
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Knowledge Booster
Algebraic Operations
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,