43. f(x) = 2x³ - 3x² 12x + 1, [2, 3]
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
43
![**41–54** Find the absolute maximum and absolute minimum values of \( f \) on the given interval.
41. \( f(x) = 12 + 4x - x^2 \), \([0, 5]\)
42. \( f(x) = 5 + 54x - 2x^3 \), \([0, 4]\)
43. \( f(x) = 2x^3 - 3x^2 - 12x + 1 \), \([-2, 3]\)
44. \( f(x) = x^3 - 6x^2 + 9x + 2 \), \([-1, 4]\)
45. \( f(x) = x^4 - 2x^2 + 3 \), \([-2, 3]\)
46. \( f(x) = (x^2 - 1)^3 \), \([-1, 2]\)
47. \( f(t) = t\sqrt{4 - t^2} \), \([-1, 2]\)
48. \( f(x) = \frac{x^2 - 4}{x^2 + 4} \), \([-4, 4]\)
49. \( f(x) = xe^{-x^2/8} \), \([-1, 4]\)
50. \( f(x) = x - \ln x \), \(\left[\frac{1}{2}, 2\right]\)
51. \( f(x) = \ln(x^2 + x + 1) \), \([-1, 1]\)
52. \( f(x) = x - 2 \tan^{-1}x \), \([0, 4]\)
53. \( f(t) = 2 \cos t + \sin 2t \), \([0, \pi/2]\)
54. \( f(t) = t + \cot(t/2) \), \([\pi/4, 7\pi/4]\)](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fc87785b0-7b08-4187-be5d-f53b11d0a1a0%2F039fa99e-a006-4e5d-88bd-c8e20a67a0bb%2Fbzta55h_processed.png&w=3840&q=75)
Transcribed Image Text:**41–54** Find the absolute maximum and absolute minimum values of \( f \) on the given interval.
41. \( f(x) = 12 + 4x - x^2 \), \([0, 5]\)
42. \( f(x) = 5 + 54x - 2x^3 \), \([0, 4]\)
43. \( f(x) = 2x^3 - 3x^2 - 12x + 1 \), \([-2, 3]\)
44. \( f(x) = x^3 - 6x^2 + 9x + 2 \), \([-1, 4]\)
45. \( f(x) = x^4 - 2x^2 + 3 \), \([-2, 3]\)
46. \( f(x) = (x^2 - 1)^3 \), \([-1, 2]\)
47. \( f(t) = t\sqrt{4 - t^2} \), \([-1, 2]\)
48. \( f(x) = \frac{x^2 - 4}{x^2 + 4} \), \([-4, 4]\)
49. \( f(x) = xe^{-x^2/8} \), \([-1, 4]\)
50. \( f(x) = x - \ln x \), \(\left[\frac{1}{2}, 2\right]\)
51. \( f(x) = \ln(x^2 + x + 1) \), \([-1, 1]\)
52. \( f(x) = x - 2 \tan^{-1}x \), \([0, 4]\)
53. \( f(t) = 2 \cos t + \sin 2t \), \([0, \pi/2]\)
54. \( f(t) = t + \cot(t/2) \), \([\pi/4, 7\pi/4]\)
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)