43. f(x) = 2x³ - 3x² 12x + 1, [2, 3]

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

43

**41–54** Find the absolute maximum and absolute minimum values of \( f \) on the given interval.

41. \( f(x) = 12 + 4x - x^2 \), \([0, 5]\)

42. \( f(x) = 5 + 54x - 2x^3 \), \([0, 4]\)

43. \( f(x) = 2x^3 - 3x^2 - 12x + 1 \), \([-2, 3]\)

44. \( f(x) = x^3 - 6x^2 + 9x + 2 \), \([-1, 4]\)

45. \( f(x) = x^4 - 2x^2 + 3 \), \([-2, 3]\)

46. \( f(x) = (x^2 - 1)^3 \), \([-1, 2]\)

47. \( f(t) = t\sqrt{4 - t^2} \), \([-1, 2]\)

48. \( f(x) = \frac{x^2 - 4}{x^2 + 4} \), \([-4, 4]\)

49. \( f(x) = xe^{-x^2/8} \), \([-1, 4]\)

50. \( f(x) = x - \ln x \), \(\left[\frac{1}{2}, 2\right]\)

51. \( f(x) = \ln(x^2 + x + 1) \), \([-1, 1]\)

52. \( f(x) = x - 2 \tan^{-1}x \), \([0, 4]\)

53. \( f(t) = 2 \cos t + \sin 2t \), \([0, \pi/2]\)

54. \( f(t) = t + \cot(t/2) \), \([\pi/4, 7\pi/4]\)
Transcribed Image Text:**41–54** Find the absolute maximum and absolute minimum values of \( f \) on the given interval. 41. \( f(x) = 12 + 4x - x^2 \), \([0, 5]\) 42. \( f(x) = 5 + 54x - 2x^3 \), \([0, 4]\) 43. \( f(x) = 2x^3 - 3x^2 - 12x + 1 \), \([-2, 3]\) 44. \( f(x) = x^3 - 6x^2 + 9x + 2 \), \([-1, 4]\) 45. \( f(x) = x^4 - 2x^2 + 3 \), \([-2, 3]\) 46. \( f(x) = (x^2 - 1)^3 \), \([-1, 2]\) 47. \( f(t) = t\sqrt{4 - t^2} \), \([-1, 2]\) 48. \( f(x) = \frac{x^2 - 4}{x^2 + 4} \), \([-4, 4]\) 49. \( f(x) = xe^{-x^2/8} \), \([-1, 4]\) 50. \( f(x) = x - \ln x \), \(\left[\frac{1}{2}, 2\right]\) 51. \( f(x) = \ln(x^2 + x + 1) \), \([-1, 1]\) 52. \( f(x) = x - 2 \tan^{-1}x \), \([0, 4]\) 53. \( f(t) = 2 \cos t + \sin 2t \), \([0, \pi/2]\) 54. \( f(t) = t + \cot(t/2) \), \([\pi/4, 7\pi/4]\)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,