4.93 Give a simple method to simulate from the gamma distribution with parameters a and when the shape parameter a is equal to the integer n. Hint: The sum of n independent random variables, each having an exponential density with parameter A, has an Erlang density with parameters n and λ.
4.93 Give a simple method to simulate from the gamma distribution with parameters a and when the shape parameter a is equal to the integer n. Hint: The sum of n independent random variables, each having an exponential density with parameter A, has an Erlang density with parameters n and λ.
A First Course in Probability (10th Edition)
10th Edition
ISBN:9780134753119
Author:Sheldon Ross
Publisher:Sheldon Ross
Chapter1: Combinatorial Analysis
Section: Chapter Questions
Problem 1.1P: a. How many different 7-place license plates are possible if the first 2 places are for letters and...
Related questions
Question
Question number 4.93
![09
On
od
C-
e
W.
is
re
in
re
te
-al
es
for s> 0, where c> 0 is a known constant. Determine the
ms of the molecule,
probability density of the kinetic energy E =
where m is the mass of one gas molecule.
4.90 Let the random variable X have uniform density on (-1,1). What is the
probability density of Y = In(|X") for any constant a > 0?
4.91 Let the variable Y be defined by Y 10%, where X is uniformly
distributed on (0, 1). Verify that Y has the density g(y)
Pindi for
1 < y < 10 and g(y) 0 otherwise. This is the so-called Benford
1
=
y
(10
density.
4.92 Verify that a random observation from the Weibull distribution with
shape parameter a and scale parameter λ can be simulated by taking
X = [-In(1 – U)]¹/a, where U is a random number from the interval
(0, 1). Also, use the inverse-transformation method to simulate a random
observation from the logistic distribution function F(x) = */(1+e) on
(-∞, ∞).
Jhon
list liw
to
4.93 Give a simple method to simulate from the gamma distribution with
parameters a and when the shape parameter a is equal to the integer
n. Hint: The sum of n independent random variables, each having
an exponential density with parameter λ, has an Erlang density with
parameters n and λ.
=](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F02433631-7a65-4f58-bcbc-1ca9258e00c4%2F0a974ca5-7966-49e0-a633-350ee1d802c7%2F5c8fjgo_processed.jpeg&w=3840&q=75)
Transcribed Image Text:09
On
od
C-
e
W.
is
re
in
re
te
-al
es
for s> 0, where c> 0 is a known constant. Determine the
ms of the molecule,
probability density of the kinetic energy E =
where m is the mass of one gas molecule.
4.90 Let the random variable X have uniform density on (-1,1). What is the
probability density of Y = In(|X") for any constant a > 0?
4.91 Let the variable Y be defined by Y 10%, where X is uniformly
distributed on (0, 1). Verify that Y has the density g(y)
Pindi for
1 < y < 10 and g(y) 0 otherwise. This is the so-called Benford
1
=
y
(10
density.
4.92 Verify that a random observation from the Weibull distribution with
shape parameter a and scale parameter λ can be simulated by taking
X = [-In(1 – U)]¹/a, where U is a random number from the interval
(0, 1). Also, use the inverse-transformation method to simulate a random
observation from the logistic distribution function F(x) = */(1+e) on
(-∞, ∞).
Jhon
list liw
to
4.93 Give a simple method to simulate from the gamma distribution with
parameters a and when the shape parameter a is equal to the integer
n. Hint: The sum of n independent random variables, each having
an exponential density with parameter λ, has an Erlang density with
parameters n and λ.
=
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![A First Course in Probability (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134753119/9780134753119_smallCoverImage.gif)
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON
![A First Course in Probability](https://www.bartleby.com/isbn_cover_images/9780321794772/9780321794772_smallCoverImage.gif)
![A First Course in Probability (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134753119/9780134753119_smallCoverImage.gif)
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON
![A First Course in Probability](https://www.bartleby.com/isbn_cover_images/9780321794772/9780321794772_smallCoverImage.gif)