4.2 An op amp with an open-loop gain of 6 × 10° and Vec = 10 V has an output voltage of 3 V. If the voltage at the inverting input is –1 µV, what is the magnitude of the noninverting-input voltage?
4.2 An op amp with an open-loop gain of 6 × 10° and Vec = 10 V has an output voltage of 3 V. If the voltage at the inverting input is –1 µV, what is the magnitude of the noninverting-input voltage?
Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
Related questions
Question
Please help with 4.2 and 4.7b.
![### Problem 4.2
An operational amplifier (op amp) with an open-loop gain of \( 6 \times 10^5 \) and \( V_{cc} = 10 \) V has an output voltage of 3 V. If the voltage at the inverting input is \(-1 \, \mu \text{V}\), what is the magnitude of the noninverting-input voltage?
#### Solution:
Given:
- Open-loop gain of the op amp, \( A = 6 \times 10^5 \)
- Output voltage, \( V_{\text{out}} = 3 \, \text{V} \)
- Inverting input voltage, \( V_{-} = -1 \, \mu \text{V} = -1 \times 10^{-6} \, \text{V} \)
We need to find the noninverting input voltage \( V_{+} \).
The relationship between the input and output of an op amp in open-loop configuration can be expressed as:
\[ V_{\text{out}} = A \times (V_{+} - V_{-}) \]
Solving for \( V_{+} - V_{-} \):
\[ V_{+} - V_{-} = \frac{V_{\text{out}}}{A} \]
\[ V_{+} - (-1 \times 10^{-6}) = \frac{3}{6 \times 10^5} \]
\[ V_{+} + 1 \times 10^{-6} = \frac{3}{6 \times 10^5} \]
\[ V_{+} = \frac{3}{6 \times 10^5} - 1 \times 10^{-6} \]
\[ V_{+} = 0.5 \times 10^{-5} - 1 \times 10^{-6} \]
\[ V_{+} = 5 \times 10^{-6} - 1 \times 10^{-6} \]
\[ V_{+} = 4 \times 10^{-6} \, \text{V} \]
Therefore, the magnitude of the noninverting-input voltage is \( 4 \, \mu \text{V} \).](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Ff920003c-b80d-4d46-9199-437e1336b936%2Faad5f2b5-8d55-41c6-9c88-b45af1af84f7%2Fi22q5sjd_processed.png&w=3840&q=75)
Transcribed Image Text:### Problem 4.2
An operational amplifier (op amp) with an open-loop gain of \( 6 \times 10^5 \) and \( V_{cc} = 10 \) V has an output voltage of 3 V. If the voltage at the inverting input is \(-1 \, \mu \text{V}\), what is the magnitude of the noninverting-input voltage?
#### Solution:
Given:
- Open-loop gain of the op amp, \( A = 6 \times 10^5 \)
- Output voltage, \( V_{\text{out}} = 3 \, \text{V} \)
- Inverting input voltage, \( V_{-} = -1 \, \mu \text{V} = -1 \times 10^{-6} \, \text{V} \)
We need to find the noninverting input voltage \( V_{+} \).
The relationship between the input and output of an op amp in open-loop configuration can be expressed as:
\[ V_{\text{out}} = A \times (V_{+} - V_{-}) \]
Solving for \( V_{+} - V_{-} \):
\[ V_{+} - V_{-} = \frac{V_{\text{out}}}{A} \]
\[ V_{+} - (-1 \times 10^{-6}) = \frac{3}{6 \times 10^5} \]
\[ V_{+} + 1 \times 10^{-6} = \frac{3}{6 \times 10^5} \]
\[ V_{+} = \frac{3}{6 \times 10^5} - 1 \times 10^{-6} \]
\[ V_{+} = 0.5 \times 10^{-5} - 1 \times 10^{-6} \]
\[ V_{+} = 5 \times 10^{-6} - 1 \times 10^{-6} \]
\[ V_{+} = 4 \times 10^{-6} \, \text{V} \]
Therefore, the magnitude of the noninverting-input voltage is \( 4 \, \mu \text{V} \).
![### 4.7 For the circuit in Fig. P4.7:
(a) Use the op-amp equivalent-circuit model to develop an expression for \( G = \frac{v_o}{v_s} \).
(b) Simplify the expression by applying the ideal op-amp model parameters, namely \( A \to \infty \), \( R_i \to \infty \), and \( R_o \to 0 \).
#### Figure P4.7: Circuit for Problem 4.7.
**Description of the Circuit:**
- **Voltage Source (\(v_s\))**: Provides the input signal to the circuit.
- **Operational Amplifier (Op-Amp)**: Represented with the standard triangle symbol pointing to the right, with the inverting input (-), non-inverting input (+), and output.
- **Non-inverting Input**: Connected to the ground.
- **Inverting Input**: Connected to the voltage source (\(v_s\)).
- **Output Voltage (\(v_o\))**: The voltage across the load resistor (\(R_L\)).
- **Load Resistor (\(R_L\))**: Connected between the output of the op-amp and the ground.
The circuit schematic can be interpreted as a typical configuration for analyzing the gain (\(G\)) of an operational amplifier inverting amplifier setup. The analysis involves exploring both the equivalent circuit model of the op-amp and simplifying it under the ideal op-amp assumptions.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Ff920003c-b80d-4d46-9199-437e1336b936%2Faad5f2b5-8d55-41c6-9c88-b45af1af84f7%2Fffm6gqq_processed.png&w=3840&q=75)
Transcribed Image Text:### 4.7 For the circuit in Fig. P4.7:
(a) Use the op-amp equivalent-circuit model to develop an expression for \( G = \frac{v_o}{v_s} \).
(b) Simplify the expression by applying the ideal op-amp model parameters, namely \( A \to \infty \), \( R_i \to \infty \), and \( R_o \to 0 \).
#### Figure P4.7: Circuit for Problem 4.7.
**Description of the Circuit:**
- **Voltage Source (\(v_s\))**: Provides the input signal to the circuit.
- **Operational Amplifier (Op-Amp)**: Represented with the standard triangle symbol pointing to the right, with the inverting input (-), non-inverting input (+), and output.
- **Non-inverting Input**: Connected to the ground.
- **Inverting Input**: Connected to the voltage source (\(v_s\)).
- **Output Voltage (\(v_o\))**: The voltage across the load resistor (\(R_L\)).
- **Load Resistor (\(R_L\))**: Connected between the output of the op-amp and the ground.
The circuit schematic can be interpreted as a typical configuration for analyzing the gain (\(G\)) of an operational amplifier inverting amplifier setup. The analysis involves exploring both the equivalent circuit model of the op-amp and simplifying it under the ideal op-amp assumptions.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Introductory Circuit Analysis (13th Edition)](https://www.bartleby.com/isbn_cover_images/9780133923605/9780133923605_smallCoverImage.gif)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
![Delmar's Standard Textbook Of Electricity](https://www.bartleby.com/isbn_cover_images/9781337900348/9781337900348_smallCoverImage.jpg)
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
![Programmable Logic Controllers](https://www.bartleby.com/isbn_cover_images/9780073373843/9780073373843_smallCoverImage.gif)
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
![Introductory Circuit Analysis (13th Edition)](https://www.bartleby.com/isbn_cover_images/9780133923605/9780133923605_smallCoverImage.gif)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
![Delmar's Standard Textbook Of Electricity](https://www.bartleby.com/isbn_cover_images/9781337900348/9781337900348_smallCoverImage.jpg)
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
![Programmable Logic Controllers](https://www.bartleby.com/isbn_cover_images/9780073373843/9780073373843_smallCoverImage.gif)
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
![Fundamentals of Electric Circuits](https://www.bartleby.com/isbn_cover_images/9780078028229/9780078028229_smallCoverImage.gif)
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education
![Electric Circuits. (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780134746968/9780134746968_smallCoverImage.gif)
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON
![Engineering Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780078028151/9780078028151_smallCoverImage.gif)
Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,