4. The upper hemisphere of the unit sphere can be parameterized, using cylindrical coordinates, as (sind) ble (r, 0) = (r cos , rsine, √1-²), tegral 0≤r≤1, 0≤0 ≤ 2T. (1-7²) 1/2 2051 Use this to find the area of the sphere. 75 A = -IN =( = 2 1/1² +r²) dr do
4. The upper hemisphere of the unit sphere can be parameterized, using cylindrical coordinates, as (sind) ble (r, 0) = (r cos , rsine, √1-²), tegral 0≤r≤1, 0≤0 ≤ 2T. (1-7²) 1/2 2051 Use this to find the area of the sphere. 75 A = -IN =( = 2 1/1² +r²) dr do
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Please ignore all writing in pencil.
![The image contains a mathematical explanation related to parameterizing the upper hemisphere of the unit sphere using cylindrical coordinates. Here's the transcription and explanation:
---
**4. The Upper Hemisphere of the Unit Sphere:**
The upper hemisphere of the unit sphere can be parameterized using cylindrical coordinates as:
\[
\Phi(r, \theta) = (r \cos \theta, r \sin \theta, \sqrt{1 - r^2})
\]
Where:
- \(0 \leq r \leq 1\)
- \(0 \leq \theta \leq 2\pi\)
**Objective:**
Use this parameterization to find the area of the sphere.
**Mathematical Expression:**
\[
A = \int_0^{2\pi} \int_0^1 \left(\frac{1}{4(1-r^2)} + r^2\right) dr d\theta
\]
**Notes:**
- A handwritten note says "doable integral," indicating that the integral can be solved with standard methods.
- There's an expression set for \(\Phi \cdot \mathbf{r} = \langle \cos \theta, \sin \theta, \cdots \rangle\).
The given integral expression is intended to calculate the area of the upper hemisphere by integrating over the region defined by the cylindrical coordinates.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F5dc3ef7d-848e-4463-9030-e4a43ebc2b5f%2F863e6af1-7e51-4c56-8bff-8d9e157e3b39%2F3nyfzzu_processed.jpeg&w=3840&q=75)
Transcribed Image Text:The image contains a mathematical explanation related to parameterizing the upper hemisphere of the unit sphere using cylindrical coordinates. Here's the transcription and explanation:
---
**4. The Upper Hemisphere of the Unit Sphere:**
The upper hemisphere of the unit sphere can be parameterized using cylindrical coordinates as:
\[
\Phi(r, \theta) = (r \cos \theta, r \sin \theta, \sqrt{1 - r^2})
\]
Where:
- \(0 \leq r \leq 1\)
- \(0 \leq \theta \leq 2\pi\)
**Objective:**
Use this parameterization to find the area of the sphere.
**Mathematical Expression:**
\[
A = \int_0^{2\pi} \int_0^1 \left(\frac{1}{4(1-r^2)} + r^2\right) dr d\theta
\]
**Notes:**
- A handwritten note says "doable integral," indicating that the integral can be solved with standard methods.
- There's an expression set for \(\Phi \cdot \mathbf{r} = \langle \cos \theta, \sin \theta, \cdots \rangle\).
The given integral expression is intended to calculate the area of the upper hemisphere by integrating over the region defined by the cylindrical coordinates.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)