4. Show that is open in P3 X := {(x, y, z) € R³ : x + y + z ‡ 1}

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
4. Show that
is open in R³.
X := {(x, y, z) = R³ : x+y+z‡# 1}
Transcribed Image Text:4. Show that is open in R³. X := {(x, y, z) = R³ : x+y+z‡# 1}
Expert Solution
Step 1: To define a function:

One must solve the problem with the help of topology.

L e t space u s space d e f i n e space a space f u n c t i o n space f colon space straight real numbers cubed rightwards arrow straight real numbers space d e f i n e d space b y space
f left parenthesis x comma y comma z right parenthesis equals x plus y plus z minus 1.
A g a i n space l e t space u s space d e f i n e space t h e space s e t space X equals left curly bracket left parenthesis x comma y comma z right parenthesis element of straight real numbers cubed vertical line f left parenthesis x comma y comma z right parenthesis not equal to 0 right curly bracket
H e n c e space t h e space r a n g e space s e t space o f space f space r e s t r i c t e d space o n space X space i s space t h e space u n i o n space o f space t w o space o p e n s space s e t s
left parenthesis negative infinity comma 0 right parenthesis union left parenthesis 0 comma infinity right parenthesis.

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,