4. (s+1)²(s²-4s+85)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Answer #4 and find the Inverse Laplace Transform of the functions by reduction to partial fractions.

Refer to the given answer choices so that I will know if my solution is wrong.

s² +3
1.
(s-3)(s+5)(s-1)²
s2-s+3
2.
s³ (s+5)(s-2)
s-8
3. -
(s-3)(s²+2s+17)
4.
(s+1)²(s²-4s+85)
s²+5s-2
5.
(s+1)²(s-1)(s-7)
Transcribed Image Text:s² +3 1. (s-3)(s+5)(s-1)² s2-s+3 2. s³ (s+5)(s-2) s-8 3. - (s-3)(s²+2s+17) 4. (s+1)²(s²-4s+85) s²+5s-2 5. (s+1)²(s-1)(s-7)
Problem 4. Which gives the inverse transforms of the given s-domain function?
O [(1/8100)e*t][90t + 38e^3t sin 9t - 84e^3t cos 9t + 84]
O [(1/8100)e^t][-90t + 38e^3t sin 9t - 84e^3t cos 9t + 84]
O [(1/8100)e^-t][-90t + 38e^3t sin 9t - 84e^3t cos 9t + 84]
O [(1/8100)e^-t][90t + 38e^3t sin 9t + 84e^3t cos 9t + 84]
Transcribed Image Text:Problem 4. Which gives the inverse transforms of the given s-domain function? O [(1/8100)e*t][90t + 38e^3t sin 9t - 84e^3t cos 9t + 84] O [(1/8100)e^t][-90t + 38e^3t sin 9t - 84e^3t cos 9t + 84] O [(1/8100)e^-t][-90t + 38e^3t sin 9t - 84e^3t cos 9t + 84] O [(1/8100)e^-t][90t + 38e^3t sin 9t + 84e^3t cos 9t + 84]
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,