4. Prove the following corollary to the root test: If p(n) = |an|/n converges to a limi then: • If L < 1, then the series converges absolutely. If L S 1 then the series diverges
4. Prove the following corollary to the root test: If p(n) = |an|/n converges to a limi then: • If L < 1, then the series converges absolutely. If L S 1 then the series diverges
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![4. Prove the following corollary to the root test: If
p(n) = |anl/" converges to a limit L,
then:
• If L < 1, then the series converges absolutely.
• If L > 1 then the series diverges.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F32b90586-0d73-43dc-903b-9a80d199c8ec%2Fd98a4924-7a87-4df4-b0dd-1b780ea2c8ad%2Fh4u3lt9_processed.png&w=3840&q=75)
Transcribed Image Text:4. Prove the following corollary to the root test: If
p(n) = |anl/" converges to a limit L,
then:
• If L < 1, then the series converges absolutely.
• If L > 1 then the series diverges.
![Theorem 3.9 (Root test, limit root test). Let an be a sequence of real numbers.
Let
p(n) = |an|1/".
Then:
(i) If there exists c < 1 and N >1 so that p(n) < c for all n 2 N, then the
series an converges absolutely.
(ii) If there exist arbitrarily large n so that p(n) > 1, then the series diverges.
Consequently, if p(n) → L, then we obtain:
• If L < 1, then the series converges absolutely.
• If L > 1, then the series diverges.
• If L = 1, then the test is inconclusive.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F32b90586-0d73-43dc-903b-9a80d199c8ec%2Fd98a4924-7a87-4df4-b0dd-1b780ea2c8ad%2Fsbf7ydl_processed.png&w=3840&q=75)
Transcribed Image Text:Theorem 3.9 (Root test, limit root test). Let an be a sequence of real numbers.
Let
p(n) = |an|1/".
Then:
(i) If there exists c < 1 and N >1 so that p(n) < c for all n 2 N, then the
series an converges absolutely.
(ii) If there exist arbitrarily large n so that p(n) > 1, then the series diverges.
Consequently, if p(n) → L, then we obtain:
• If L < 1, then the series converges absolutely.
• If L > 1, then the series diverges.
• If L = 1, then the test is inconclusive.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 5 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)