4. Let G= (a, p: a' = B² = (aß)* = e ), then the centre of G is (D) {e,a) (A) {e} (B) {a.B) (C) G 5. Let H be a subgroup of a group G such that index [G: H] =2 then H is (A) abelian group (B) Normal group (C) Ca(H)= Ne(H] (D) None 6. Class equation of group G=ca,b: a²=b==(ab)²=e> is (A) 4-1+1+1+1 (B) 4-1+1+2 (C) 3-1+2 (D) 4=2+2

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Topic Video
Question
Just tell anser no need to. Explain
4. Let G= {a, ß: a² = B² = («ß)* = e ), then the centre of G is
(B) {a, f}
5. Let H be a subgroup of a group G such that index [G: H] =2 then H is
(A) abelian group (B) Normal group (C) CalH)= Ne(H] (D) None
(A) {e)
(C) G
(D) {e,a?)
6. Class equation of group G=ca,b: a=b²=(ab)%=e> is
(A) 4=1+1+1+1
(8) 4-1+1+2
(C) 3=1+2
(D) 4=2+2
Transcribed Image Text:4. Let G= {a, ß: a² = B² = («ß)* = e ), then the centre of G is (B) {a, f} 5. Let H be a subgroup of a group G such that index [G: H] =2 then H is (A) abelian group (B) Normal group (C) CalH)= Ne(H] (D) None (A) {e) (C) G (D) {e,a?) 6. Class equation of group G=ca,b: a=b²=(ab)%=e> is (A) 4=1+1+1+1 (8) 4-1+1+2 (C) 3=1+2 (D) 4=2+2
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Data Collection, Sampling Methods, and Bias
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,