4. Let $XS equal the weight in grams of a Low-Fat Strawberry Kudo and SYS the weight of a Low-Fat Blueberry Kudo. Assume that the distribution of $X$ and SYS are $\mathrm{N}\left(\mu_(X), \sigma^(2)\right)$ and $\mathrm{N}\left(\mu_{Y), \sigma^(2}\right)$, respectively. Let $$ \begin{array}{1111111i1) 21.7 & 21.0 & 21.2 & 20.7 & 20.4 & 21.9 & 20.2 & 21.6 & 20.6 \end{array} $$ be $n=9$ observations of $X$, and let $$ \begin{array}{111111iiiii1} 19.5 & 20.5 & 20.3 & 20.6 & 20.7 & 19.3 & 20 & 18.3 & 18.9 & 20.5 & 19.9 & 21.0 \end{array} $$ be $m=12$ observations of $YS. Test the

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
4. Let $X$ equal the weight in grams of
a Low-Fat Strawberry Kudo and $YS the
weight of a Low-Fat Blueberry Kudo.
Assume that the distribution of $X$ and
SYS are $\mathrm{N}\left(\mu_{X),
\sigma^(2} \right)$ and
$\mathrm{N} \left(\mu_{Y},
\sigma^(2}\right)$, respectively. Let
$$
\begin{array}{(111111111)
21.7 & 21.0 & 21.2 & 20.7 & 20.4 & 21.9
& 20.2 & 21.6 & 20.6
\end{array}
$$
be $n=9$ observations of $X$, and let
$$
\begin{array}{(111111111111}
19.5 & 20.5 & 20.3 & 20.6 & 20.7 & 19.3
& 20 & 18.3 & 18.9 & 20.5 & 19.9 & 21.0
\end{array}
$$
be $m=12$ observations of $Y$. Test the
null hypothesis $H_{0}:
\mu_{X}=\mu_{Y}$ against a two-sided
alternative hypothesis $H_{1}: \mu_{X}
\neq \mu_{Y}$ at the significance level
of $\alpha=0.05$. SP.DL.384
Transcribed Image Text:4. Let $X$ equal the weight in grams of a Low-Fat Strawberry Kudo and $YS the weight of a Low-Fat Blueberry Kudo. Assume that the distribution of $X$ and SYS are $\mathrm{N}\left(\mu_{X), \sigma^(2} \right)$ and $\mathrm{N} \left(\mu_{Y}, \sigma^(2}\right)$, respectively. Let $$ \begin{array}{(111111111) 21.7 & 21.0 & 21.2 & 20.7 & 20.4 & 21.9 & 20.2 & 21.6 & 20.6 \end{array} $$ be $n=9$ observations of $X$, and let $$ \begin{array}{(111111111111} 19.5 & 20.5 & 20.3 & 20.6 & 20.7 & 19.3 & 20 & 18.3 & 18.9 & 20.5 & 19.9 & 21.0 \end{array} $$ be $m=12$ observations of $Y$. Test the null hypothesis $H_{0}: \mu_{X}=\mu_{Y}$ against a two-sided alternative hypothesis $H_{1}: \mu_{X} \neq \mu_{Y}$ at the significance level of $\alpha=0.05$. SP.DL.384
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman