4. Let a > 0 be a (fixed) real number. S (a) Using lower and upper Riemann sums for n ≥ 1, we have 1ª + 2ª + ... + (n − 1)ª ≤ [™" a r®dr <1* +2° +...+n. (b) Using part (a), or otherwise, prove that lim 818 radr, prove that for any integer 1a + 2a +...+na na+1 1 a +1

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Please help me with ghis

4. Let a > 0 be a (fixed) real number.
'n
(a) Using lower and upper Riemann sums for
S
n≥ 1, we have
1a + 2ª +... + (n - - 1)ª ≤ forh
(b) Using part (a), or otherwise, prove that
lim
84x
xªdx, prove that for any integer
r@dr <1 +2° +...+n“.
1a + 2a +...+ na
na+1
1
a +1
Transcribed Image Text:4. Let a > 0 be a (fixed) real number. 'n (a) Using lower and upper Riemann sums for S n≥ 1, we have 1a + 2ª +... + (n - - 1)ª ≤ forh (b) Using part (a), or otherwise, prove that lim 84x xªdx, prove that for any integer r@dr <1 +2° +...+n“. 1a + 2a +...+ na na+1 1 a +1
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,