4. If y = tan-¹(cos x), then dy = dx

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question

AP #4

## Calculus Problem

### Problem Statement

4. If \( y = \tan^{-1} (\cos x) \), then \(\frac{dy}{dx} =\)

### Instructions

To solve this problem, differentiate the function \( y = \tan^{-1} (\cos x) \) with respect to \( x \) to find the value of \(\frac{dy}{dx}\).

### Solution Approach

1. **Differentiate using the chain rule:**
   - Recognize that \( y = \tan^{-1}(u) \) where \( u = \cos x \).
   - Use the chain rule: \(\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}\).

2. **Differentiate the outer function:**
   - \(\frac{dy}{du} = \frac{1}{1 + u^2}\).

3. **Differentiate the inner function:**
   - \( u = \cos x \) implies \(\frac{du}{dx} = -\sin x\).

4. **Combine the results:**
   - \(\frac{dy}{dx} = \frac{1}{1 + \cos^2 x} \cdot (-\sin x)\).

5. **Simplify if necessary:**
   - Simplify the expression to obtain the final derivative result. 

This detailed approach will guide students on how to methodically find the derivative using calculus rules.
Transcribed Image Text:## Calculus Problem ### Problem Statement 4. If \( y = \tan^{-1} (\cos x) \), then \(\frac{dy}{dx} =\) ### Instructions To solve this problem, differentiate the function \( y = \tan^{-1} (\cos x) \) with respect to \( x \) to find the value of \(\frac{dy}{dx}\). ### Solution Approach 1. **Differentiate using the chain rule:** - Recognize that \( y = \tan^{-1}(u) \) where \( u = \cos x \). - Use the chain rule: \(\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}\). 2. **Differentiate the outer function:** - \(\frac{dy}{du} = \frac{1}{1 + u^2}\). 3. **Differentiate the inner function:** - \( u = \cos x \) implies \(\frac{du}{dx} = -\sin x\). 4. **Combine the results:** - \(\frac{dy}{dx} = \frac{1}{1 + \cos^2 x} \cdot (-\sin x)\). 5. **Simplify if necessary:** - Simplify the expression to obtain the final derivative result. This detailed approach will guide students on how to methodically find the derivative using calculus rules.
Expert Solution
Step 1

As we know the Chain rule:

fgx'=f'gx·g'x

And

Use the common derivatives.

ddxtan-1x=1x2+1ddxcosx=-sinx

Given:

y=tan-1cosx

steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning