Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
AP #4
![## Calculus Problem
### Problem Statement
4. If \( y = \tan^{-1} (\cos x) \), then \(\frac{dy}{dx} =\)
### Instructions
To solve this problem, differentiate the function \( y = \tan^{-1} (\cos x) \) with respect to \( x \) to find the value of \(\frac{dy}{dx}\).
### Solution Approach
1. **Differentiate using the chain rule:**
- Recognize that \( y = \tan^{-1}(u) \) where \( u = \cos x \).
- Use the chain rule: \(\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}\).
2. **Differentiate the outer function:**
- \(\frac{dy}{du} = \frac{1}{1 + u^2}\).
3. **Differentiate the inner function:**
- \( u = \cos x \) implies \(\frac{du}{dx} = -\sin x\).
4. **Combine the results:**
- \(\frac{dy}{dx} = \frac{1}{1 + \cos^2 x} \cdot (-\sin x)\).
5. **Simplify if necessary:**
- Simplify the expression to obtain the final derivative result.
This detailed approach will guide students on how to methodically find the derivative using calculus rules.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F66d30f65-22c6-47d5-b371-c8d8c2d2b3f2%2Fe2a9b7d8-46e6-45e0-833a-1d42deaa2b8d%2Fl3edsk_processed.jpeg&w=3840&q=75)
Transcribed Image Text:## Calculus Problem
### Problem Statement
4. If \( y = \tan^{-1} (\cos x) \), then \(\frac{dy}{dx} =\)
### Instructions
To solve this problem, differentiate the function \( y = \tan^{-1} (\cos x) \) with respect to \( x \) to find the value of \(\frac{dy}{dx}\).
### Solution Approach
1. **Differentiate using the chain rule:**
- Recognize that \( y = \tan^{-1}(u) \) where \( u = \cos x \).
- Use the chain rule: \(\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}\).
2. **Differentiate the outer function:**
- \(\frac{dy}{du} = \frac{1}{1 + u^2}\).
3. **Differentiate the inner function:**
- \( u = \cos x \) implies \(\frac{du}{dx} = -\sin x\).
4. **Combine the results:**
- \(\frac{dy}{dx} = \frac{1}{1 + \cos^2 x} \cdot (-\sin x)\).
5. **Simplify if necessary:**
- Simplify the expression to obtain the final derivative result.
This detailed approach will guide students on how to methodically find the derivative using calculus rules.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
Step 1
As we know the Chain rule:
And
Use the common derivatives.
Given:
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
![Precalculus](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Calculus: Early Transcendental Functions](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning