4. If the concentration of the reactant H2 was decreased from 1.0x 10-2 M to 2.7x 104 M, calculate the reaction quotient (Q) and determine which way the chemical system would shift by comparing the value of Q to K. BIU T, O Word(s)

Chemistry: The Molecular Science
5th Edition
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:John W. Moore, Conrad L. Stanitski
Chapter12: Chemical Equilibrium
Section: Chapter Questions
Problem 51QRT: At room temperature, the equilibrium constant Kc for the reaction 2 NO(g) ⇌ N2(g) + O2(g) is 1.4 ×...
icon
Related questions
Question
Answer 4 please
Use this information to answer Questions 3, 4, and 5:
The equilibrium constant (K) of the reaction below is K = 6.0 x 10´2, with initial concentrations as follows:
[H2] = 1.0 x 102 M, [N2] = 4.0 M, and [NH3] = 1.0 x 10 M.
N2(g) + 3H2(g) = 2NH3(g)
3. Consider the chemical reaction: N2+ 3H2yields 2NH3. If the concentration of the reactant H2 was increased from
1.0x 102 M to 2.5x 101 M, calculate the reaction quotient (Q) and determine which way the chemical system would
shift by comparing the value of Q to K.
B IU E E T
T
O Word(s)
4. If the concentration of the reactant H2 was decreased from 1.0 x 10-2 M to 2.7 x 10-4 M, calculate the reaction
quotient (Q) and determine which way the chemical system would shift by comparing the value of Q to K.
B
T'
T
O Word(s)
5. If the concentration of the product NH3 was increased from 1.0x 104M to 5.6 x 103 M, calculate the reaction
quotient (Q) and determine which way the chemical system would shift by comparing the value of Q to K.
O Word(s)
80
888
DII
FB
F11
23
&
2
3
4
5
6
7
8
9
-
W
E
R
Y
U
{
P
D
G
H
J
K
с
V
N
>
mmand
command
option
.. .-
-
※口
Transcribed Image Text:Use this information to answer Questions 3, 4, and 5: The equilibrium constant (K) of the reaction below is K = 6.0 x 10´2, with initial concentrations as follows: [H2] = 1.0 x 102 M, [N2] = 4.0 M, and [NH3] = 1.0 x 10 M. N2(g) + 3H2(g) = 2NH3(g) 3. Consider the chemical reaction: N2+ 3H2yields 2NH3. If the concentration of the reactant H2 was increased from 1.0x 102 M to 2.5x 101 M, calculate the reaction quotient (Q) and determine which way the chemical system would shift by comparing the value of Q to K. B IU E E T T O Word(s) 4. If the concentration of the reactant H2 was decreased from 1.0 x 10-2 M to 2.7 x 10-4 M, calculate the reaction quotient (Q) and determine which way the chemical system would shift by comparing the value of Q to K. B T' T O Word(s) 5. If the concentration of the product NH3 was increased from 1.0x 104M to 5.6 x 103 M, calculate the reaction quotient (Q) and determine which way the chemical system would shift by comparing the value of Q to K. O Word(s) 80 888 DII FB F11 23 & 2 3 4 5 6 7 8 9 - W E R Y U { P D G H J K с V N > mmand command option .. .- - ※口
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Knowledge Booster
Tools in Analytical Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Chemistry: The Molecular Science
Chemistry: The Molecular Science
Chemistry
ISBN:
9781285199047
Author:
John W. Moore, Conrad L. Stanitski
Publisher:
Cengage Learning
Chemistry for Engineering Students
Chemistry for Engineering Students
Chemistry
ISBN:
9781337398909
Author:
Lawrence S. Brown, Tom Holme
Publisher:
Cengage Learning
Introductory Chemistry: A Foundation
Introductory Chemistry: A Foundation
Chemistry
ISBN:
9781337399425
Author:
Steven S. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
World of Chemistry, 3rd edition
World of Chemistry, 3rd edition
Chemistry
ISBN:
9781133109655
Author:
Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCoste
Publisher:
Brooks / Cole / Cengage Learning
Chemistry
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Chemistry: An Atoms First Approach
Chemistry: An Atoms First Approach
Chemistry
ISBN:
9781305079243
Author:
Steven S. Zumdahl, Susan A. Zumdahl
Publisher:
Cengage Learning