4. (i) Let f(x) = x² + 3x³ + 2x² +2 and g(x) = x² + 2x + 1 € Q[x]. Find the unique polynomials q(x), r(x) E Q[x] such that f(x) = g(x)g(x) +r(x), where either r(x) = 0 or 0≤ deg r(x) < deg g(x). (ii) Let f(x) = x¹ + [3] x³ + [2]x² + [2] and g(x) = x² + [2] + [1] € Zs [x]. Find g(x), r(x) = Z₁ [x] such that f(x)= q(x)g(x) +r(x), where either r(x) = 0 or 0 ≤ deg r(x) < deg g(x).

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Solve all parts of this question ( 2 parts). Write step by step clearly !
4. (i) Let f(x) = x² + 3x³ + 2x² + 2 and g(x) = x² + 2x + 1 € Q[x]. Find the unique polynomials q(x),
r(x) E Q[x] such that f(x) = q (x)g(x) +r(x), where either r(x) = 0 or 0 ≤ deg r(x) < deg g(x).
(ii) Let f(x) = x¹ + [3]x³+ [2]x² + [2] and g(x) = x² + [2]x+ [1] € Z5 [x]. Find q(x), r(x) € Z5 [2] such that
f(x) = g(x)g(x) +r(x), where either r(x) = 0 or 0≤ deg r(x) < deg g(x).
Transcribed Image Text:4. (i) Let f(x) = x² + 3x³ + 2x² + 2 and g(x) = x² + 2x + 1 € Q[x]. Find the unique polynomials q(x), r(x) E Q[x] such that f(x) = q (x)g(x) +r(x), where either r(x) = 0 or 0 ≤ deg r(x) < deg g(x). (ii) Let f(x) = x¹ + [3]x³+ [2]x² + [2] and g(x) = x² + [2]x+ [1] € Z5 [x]. Find q(x), r(x) € Z5 [2] such that f(x) = g(x)g(x) +r(x), where either r(x) = 0 or 0≤ deg r(x) < deg g(x).
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,