4. (i) Let f(x) = x² + 3x³ + 2x² +2 and g(x) = x² + 2x + 1 € Q[x]. Find the unique polynomials q(x), r(x) E Q[x] such that f(x) = g(x)g(x) +r(x), where either r(x) = 0 or 0≤ deg r(x) < deg g(x). (ii) Let f(x) = x¹ + [3] x³ + [2]x² + [2] and g(x) = x² + [2] + [1] € Zs [x]. Find g(x), r(x) = Z₁ [x] such that f(x)= q(x)g(x) +r(x), where either r(x) = 0 or 0 ≤ deg r(x) < deg g(x).
4. (i) Let f(x) = x² + 3x³ + 2x² +2 and g(x) = x² + 2x + 1 € Q[x]. Find the unique polynomials q(x), r(x) E Q[x] such that f(x) = g(x)g(x) +r(x), where either r(x) = 0 or 0≤ deg r(x) < deg g(x). (ii) Let f(x) = x¹ + [3] x³ + [2]x² + [2] and g(x) = x² + [2] + [1] € Zs [x]. Find g(x), r(x) = Z₁ [x] such that f(x)= q(x)g(x) +r(x), where either r(x) = 0 or 0 ≤ deg r(x) < deg g(x).
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Solve all parts of this question ( 2 parts). Write step by step clearly !
![4. (i) Let f(x) = x² + 3x³ + 2x² + 2 and g(x) = x² + 2x + 1 € Q[x]. Find the unique polynomials q(x),
r(x) E Q[x] such that f(x) = q (x)g(x) +r(x), where either r(x) = 0 or 0 ≤ deg r(x) < deg g(x).
(ii) Let f(x) = x¹ + [3]x³+ [2]x² + [2] and g(x) = x² + [2]x+ [1] € Z5 [x]. Find q(x), r(x) € Z5 [2] such that
f(x) = g(x)g(x) +r(x), where either r(x) = 0 or 0≤ deg r(x) < deg g(x).](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fc218f049-0f8e-48eb-a22b-2f6089ff642f%2F96fe731b-cce5-47bc-962f-de8bb5f1b9c5%2F3n534b4_processed.jpeg&w=3840&q=75)
Transcribed Image Text:4. (i) Let f(x) = x² + 3x³ + 2x² + 2 and g(x) = x² + 2x + 1 € Q[x]. Find the unique polynomials q(x),
r(x) E Q[x] such that f(x) = q (x)g(x) +r(x), where either r(x) = 0 or 0 ≤ deg r(x) < deg g(x).
(ii) Let f(x) = x¹ + [3]x³+ [2]x² + [2] and g(x) = x² + [2]x+ [1] € Z5 [x]. Find q(x), r(x) € Z5 [2] such that
f(x) = g(x)g(x) +r(x), where either r(x) = 0 or 0≤ deg r(x) < deg g(x).
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)