4. Given the data below: x 1.0 1.2 1.4 1.6 1.8 2.0 f(x) 2.2183 2.6001 3.0752 3.6730 4.4296 5.3891 i. State the number of possible solutions could be obtained to approximate f'(2.0) by using 3-point backward formula. ii. Calculate all possible answer(s) you state in (i). iii. Given the actual value for f'(2.0) is 5.3891. Compare the result obtained in (ii) and explain the error of the estimation in term of h.
4. Given the data below: x 1.0 1.2 1.4 1.6 1.8 2.0 f(x) 2.2183 2.6001 3.0752 3.6730 4.4296 5.3891 i. State the number of possible solutions could be obtained to approximate f'(2.0) by using 3-point backward formula. ii. Calculate all possible answer(s) you state in (i). iii. Given the actual value for f'(2.0) is 5.3891. Compare the result obtained in (ii) and explain the error of the estimation in term of h.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Q4 Numerical Methods
![4. Given the data below:
X
1.0
1.2
1.4
1.6
1.8
2.0
f(x) 2.2183 2.6001 3.0752 3.6730 4.4296 5.3891
i.
State the number of possible solutions could be obtained to approximate
f'(2.0) by using 3-point backward formula.
ii.
Calculate all possible answer(s) you state in (i).
iii.
Given the actual value for f'(2.0) is 5.3891. Compare the result obtained in
(ii) and explain the error of the estimation in term of h.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fa232d2b3-6d5c-4e54-bd1d-7dc092ceaeca%2F95ec2e9a-b25f-4cc8-acf1-e9c578639d9a%2Fo1wtpvw_processed.png&w=3840&q=75)
Transcribed Image Text:4. Given the data below:
X
1.0
1.2
1.4
1.6
1.8
2.0
f(x) 2.2183 2.6001 3.0752 3.6730 4.4296 5.3891
i.
State the number of possible solutions could be obtained to approximate
f'(2.0) by using 3-point backward formula.
ii.
Calculate all possible answer(s) you state in (i).
iii.
Given the actual value for f'(2.0) is 5.3891. Compare the result obtained in
(ii) and explain the error of the estimation in term of h.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 4 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)