4. Find the four second partial derivatives for f(x,y) = x²sin y. state final answers and show all work: a²f əx² a²f əxəy a²f əyəx

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
### Calculus - Partial Derivatives

#### Problem Statement
4. Find the four second partial derivatives for \( f(x,y) = x^2 \sin y \). State final answers and show all work:

\[
\frac{\partial^2 f}{\partial x^2} \quad \quad \frac{\partial^2 f}{\partial y^2}
\]
\[
\frac{\partial^2 f}{\partial x \partial y} \quad \quad \frac{\partial^2 f}{\partial y \partial x}
\]

#### Solution:

Let \( f(x,y) = x^2 \sin y \).

1. **First, find the first partial derivatives:**

   - With respect to \( x \):
   
     \[
     \frac{\partial f}{\partial x} = \frac{\partial}{\partial x} (x^2 \sin y) = 2x \sin y
     \]
   
   - With respect to \( y \):
   
     \[
     \frac{\partial f}{\partial y} = \frac{\partial}{\partial y} (x^2 \sin y) = x^2 \cos y
     \]

2. **Next, find the second partial derivatives:**

   - Second partial derivative with respect to \( x \):
     
     \[
     \frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left( \frac{\partial f}{\partial x} \right) = \frac{\partial}{\partial x} (2x \sin y) = 2 \sin y
     \]
   
   - Second partial derivative with respect to \( y \):
     
     \[
     \frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left( \frac{\partial f}{\partial y} \right) = \frac{\partial}{\partial y} (x^2 \cos y) = -x^2 \sin y
     \]
   
   - Mixed partial derivative (first \( x \), then \( y \)):
     
     \[
     \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial y} \left( \frac{\partial f}{\partial x} \right
Transcribed Image Text:### Calculus - Partial Derivatives #### Problem Statement 4. Find the four second partial derivatives for \( f(x,y) = x^2 \sin y \). State final answers and show all work: \[ \frac{\partial^2 f}{\partial x^2} \quad \quad \frac{\partial^2 f}{\partial y^2} \] \[ \frac{\partial^2 f}{\partial x \partial y} \quad \quad \frac{\partial^2 f}{\partial y \partial x} \] #### Solution: Let \( f(x,y) = x^2 \sin y \). 1. **First, find the first partial derivatives:** - With respect to \( x \): \[ \frac{\partial f}{\partial x} = \frac{\partial}{\partial x} (x^2 \sin y) = 2x \sin y \] - With respect to \( y \): \[ \frac{\partial f}{\partial y} = \frac{\partial}{\partial y} (x^2 \sin y) = x^2 \cos y \] 2. **Next, find the second partial derivatives:** - Second partial derivative with respect to \( x \): \[ \frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left( \frac{\partial f}{\partial x} \right) = \frac{\partial}{\partial x} (2x \sin y) = 2 \sin y \] - Second partial derivative with respect to \( y \): \[ \frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left( \frac{\partial f}{\partial y} \right) = \frac{\partial}{\partial y} (x^2 \cos y) = -x^2 \sin y \] - Mixed partial derivative (first \( x \), then \( y \)): \[ \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial y} \left( \frac{\partial f}{\partial x} \right
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps with 31 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning