4. Consider the matrix 1 0 0 0 0 0 -2a -a (a² + a) 0 (2-a²) - (2-a²) -2a (2-a²) 2+ 4a - a² Find all values of a for which this matrix is psd. Are there values of a for which the matrix is pd?
4. Consider the matrix 1 0 0 0 0 0 -2a -a (a² + a) 0 (2-a²) - (2-a²) -2a (2-a²) 2+ 4a - a² Find all values of a for which this matrix is psd. Are there values of a for which the matrix is pd?
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Please answer question 4
![**Educational Text Transcription and Explanation**
---
1. **Consider the matrices**
\[
A_1 = \begin{pmatrix} 4 & 1 \\ 1 & 3 \end{pmatrix},
A_2 = \begin{pmatrix} -3 & 0 \\ 0 & -2 \end{pmatrix},
A_3 = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix},
A_4 = \begin{pmatrix} -5 & -4 \\ -4 & 0 \end{pmatrix}.
\]
These matrices can be used to build functions \(x^TA_1x\), \(x^TA_2x\), \(x^TA_3x\), and \(x^TA_4x\). These functions are represented (in an arbitrary order) in Figure 1. Match each matrix with its corresponding picture.
**Figure 1: Graphical representation of functions**
- **(a)**: [Graph of surface corresponding to one of the functions.]
- **(b)**: [Graph of surface corresponding to one of the functions.]
- **(c)**: [Graph of surface corresponding to one of the functions.]
- **(d)**: [Graph of surface corresponding to one of the functions.]
Explain briefly.
2. **Consider matrices of the form**
\[
M_{\alpha, \beta} := \alpha \begin{pmatrix} 1 & -2 \\ -2 & 2 \end{pmatrix} + \beta \begin{pmatrix} -1 & 1 \\ 1 & -2 \end{pmatrix}
\]
where \(\alpha\) and \(\beta\) are scalars. Depending on the values of \(\alpha\) and \(\beta\), these matrices might be positive semi-definite (psd), negative semi-definite (nsd), or indefinite. In a graph with axes \(\alpha\) and \(\beta\), represent the set of all \((\alpha, \beta)\) values for which the matrix:
(a) \( M_{\alpha, \beta} \geq 0\).
(b) \( M_{\alpha, \beta} \leq 0\).
3](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fec417cb7-f4c3-4376-ad3a-c1f5cc0351ef%2F0f648e93-e053-47e4-b929-b6f55bfcee65%2F35matp_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Educational Text Transcription and Explanation**
---
1. **Consider the matrices**
\[
A_1 = \begin{pmatrix} 4 & 1 \\ 1 & 3 \end{pmatrix},
A_2 = \begin{pmatrix} -3 & 0 \\ 0 & -2 \end{pmatrix},
A_3 = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix},
A_4 = \begin{pmatrix} -5 & -4 \\ -4 & 0 \end{pmatrix}.
\]
These matrices can be used to build functions \(x^TA_1x\), \(x^TA_2x\), \(x^TA_3x\), and \(x^TA_4x\). These functions are represented (in an arbitrary order) in Figure 1. Match each matrix with its corresponding picture.
**Figure 1: Graphical representation of functions**
- **(a)**: [Graph of surface corresponding to one of the functions.]
- **(b)**: [Graph of surface corresponding to one of the functions.]
- **(c)**: [Graph of surface corresponding to one of the functions.]
- **(d)**: [Graph of surface corresponding to one of the functions.]
Explain briefly.
2. **Consider matrices of the form**
\[
M_{\alpha, \beta} := \alpha \begin{pmatrix} 1 & -2 \\ -2 & 2 \end{pmatrix} + \beta \begin{pmatrix} -1 & 1 \\ 1 & -2 \end{pmatrix}
\]
where \(\alpha\) and \(\beta\) are scalars. Depending on the values of \(\alpha\) and \(\beta\), these matrices might be positive semi-definite (psd), negative semi-definite (nsd), or indefinite. In a graph with axes \(\alpha\) and \(\beta\), represent the set of all \((\alpha, \beta)\) values for which the matrix:
(a) \( M_{\alpha, \beta} \geq 0\).
(b) \( M_{\alpha, \beta} \leq 0\).
3
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
Step 1: Given:
4) Solution:
According to the given data, find the all values of a for which given matrix is psd.
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)