4. Compute the determinant using the Laplace expansion (using the first now and the Sonus nule for: A= 135 246 024J

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
4.1
**Title: Calculating the Determinant of a Matrix using Laplace Expansion**

**Objective:** Learn how to compute the determinant of a matrix using the Laplace expansion method, specifically focusing on the first row.

**Example:**

We have the following 3x3 matrix \( A \):

\[
A = \begin{bmatrix}
1 & 3 & 5 \\
2 & 4 & 6 \\
0 & 2 & 4 \\
\end{bmatrix}
\]

**Instructions:**

1. **Select a Row or Column:** Begin by selecting a row or column for the expansion. In this example, we will use the first row.

2. **Apply the Laplace Expansion Formula:** The determinant of matrix \( A \), denoted as \( \text{det}(A) \), can be calculated using the formula:
   
   \[
   \text{det}(A) = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} \cdot \text{det}(A_{ij})
   \]

   Where \( a_{ij} \) is the element in the \( i \)-th row and \( j \)-th column, and \( A_{ij} \) is the submatrix formed by deleting the \( i \)-th row and \( j \)-th column.

3. **Calculate Each Cofactor:** For the selected row (first row):

   - For element \( a_{11} = 1 \):  
     \[
     \text{Cofactor} = (-1)^{1+1} \cdot 1 \cdot \text{det}\left(\begin{bmatrix}
     4 & 6 \\
     2 & 4 \\
     \end{bmatrix}\right)
     \]

   - For element \( a_{12} = 3 \):  
     \[
     \text{Cofactor} = (-1)^{1+2} \cdot 3 \cdot \text{det}\left(\begin{bmatrix}
     2 & 6 \\
     0 & 4 \\
     \end{bmatrix}\right)
     \]

   - For element \( a_{13} = 5 \):  
     \[
     \text{Cofactor} = (-1)^{1+3
Transcribed Image Text:**Title: Calculating the Determinant of a Matrix using Laplace Expansion** **Objective:** Learn how to compute the determinant of a matrix using the Laplace expansion method, specifically focusing on the first row. **Example:** We have the following 3x3 matrix \( A \): \[ A = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \\ 0 & 2 & 4 \\ \end{bmatrix} \] **Instructions:** 1. **Select a Row or Column:** Begin by selecting a row or column for the expansion. In this example, we will use the first row. 2. **Apply the Laplace Expansion Formula:** The determinant of matrix \( A \), denoted as \( \text{det}(A) \), can be calculated using the formula: \[ \text{det}(A) = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} \cdot \text{det}(A_{ij}) \] Where \( a_{ij} \) is the element in the \( i \)-th row and \( j \)-th column, and \( A_{ij} \) is the submatrix formed by deleting the \( i \)-th row and \( j \)-th column. 3. **Calculate Each Cofactor:** For the selected row (first row): - For element \( a_{11} = 1 \): \[ \text{Cofactor} = (-1)^{1+1} \cdot 1 \cdot \text{det}\left(\begin{bmatrix} 4 & 6 \\ 2 & 4 \\ \end{bmatrix}\right) \] - For element \( a_{12} = 3 \): \[ \text{Cofactor} = (-1)^{1+2} \cdot 3 \cdot \text{det}\left(\begin{bmatrix} 2 & 6 \\ 0 & 4 \\ \end{bmatrix}\right) \] - For element \( a_{13} = 5 \): \[ \text{Cofactor} = (-1)^{1+3
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,