4. Calculate the work done (in J/mol) for the adiabatic compression of ethane from 20 °C and 140 KPa to 560 KPa. Assume ethane to be an ideal gas. The ideal gas heat capacity of ethane is given by Cp 3 1.131 + 19.225 х 10-3T — 5.561 х 10-672 (T in K,Cp in R mol K’ Table 3.1: Parameter Assignments for Equations of State Eqn. of State a(T,) Ω Ze vdW (1873) RK (1949) SRK (1972) 1 1/8 27/64 3/8 T,-\/2 aSRK(T,; w)† 1 0.08664 0.42748 1/3 0.08664 0.42748 1/3 PR (1976) apR(T,; w)* 1+ v? 1- V2 0.07780 0.45724 0.30740 tasrK(T;; @) = [1 + (0.480 + 1.574 w – 0.176 w²)(1 – T,1/2)]² *apr(T,; @) = [1 + (0.37464 + 1.54226 » – 0.26992 w²) (1 – T,V2)]2

Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Chapter1: Introduction
Section: Chapter Questions
Problem 1.1P
icon
Related questions
Question
100%

Please do solve question 4. Fast. It is also available on bartleby. Thanks

4. Calculate the work done (in J/mol) for the adiabatic compression of ethane from 20 °C
and 140 KPa to 560 KPa. Assume ethane to be an ideal gas. The ideal gas heat capacity
of ethane is given by
Cp
= 1.131 + 19.225 × 10-³T - 5.561 × 10-6T² (T in K,Cp in
R
mol K'
Table 3.1: Parameter Assignments for Equations of State
Eqn. of State
a(T,)
Z.
vdW (1873)
1
1/8
27/64
3/8
T,-1/2
ASRK(T;; w)*
RK (1949)
1
0.08664
0.42748
1/3
SRK (1972)
1
0.08664
0.42748
1/3
PR (1976)
aPr(T;; w)*
1+ v2
1- V2
0.07780
0.45724
0.30740
fasrK(T,; ») = [1 + (0.480 + 1.574 » – 0.176 w²)(1 – T,\2)]²
*apr(T;; @) = [1 + (0.37464 + 1.54226 w – 0.26992 m²)(1 – T,V2)]²
Transcribed Image Text:4. Calculate the work done (in J/mol) for the adiabatic compression of ethane from 20 °C and 140 KPa to 560 KPa. Assume ethane to be an ideal gas. The ideal gas heat capacity of ethane is given by Cp = 1.131 + 19.225 × 10-³T - 5.561 × 10-6T² (T in K,Cp in R mol K' Table 3.1: Parameter Assignments for Equations of State Eqn. of State a(T,) Z. vdW (1873) 1 1/8 27/64 3/8 T,-1/2 ASRK(T;; w)* RK (1949) 1 0.08664 0.42748 1/3 SRK (1972) 1 0.08664 0.42748 1/3 PR (1976) aPr(T;; w)* 1+ v2 1- V2 0.07780 0.45724 0.30740 fasrK(T,; ») = [1 + (0.480 + 1.574 » – 0.176 w²)(1 – T,\2)]² *apr(T;; @) = [1 + (0.37464 + 1.54226 w – 0.26992 m²)(1 – T,V2)]²
Expert Solution
steps

Step by step

Solved in 4 steps with 5 images

Blurred answer
Similar questions
Recommended textbooks for you
Introduction to Chemical Engineering Thermodynami…
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
Elements of Chemical Reaction Engineering (5th Ed…
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
Process Dynamics and Control, 4e
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:
9781119285915
Author:
Seborg
Publisher:
WILEY
Industrial Plastics: Theory and Applications
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:
9781285061238
Author:
Lokensgard, Erik
Publisher:
Delmar Cengage Learning
Unit Operations of Chemical Engineering
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:
9780072848236
Author:
Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:
McGraw-Hill Companies, The