4. ABC Dog Food Company located in Ottawa sells large bags of dog food to warehouse clubs. ABC uses an automatic filling process to fill the bags. Weights of the filled bags are approximately normally distributed with a mean of 50 kilograms and a standard deviation of 1.25 kilograms. (a) What is the probability that a filled bag will weigh less than 49.5 kilograms? (b) What is the probability that a randomly sampled filled bag will weigh between 48.5 and 51 kilograms? (c) What is the minimum weight a bag of dog food could be and remain in the top 15% of all bags filled? (d) ABC is unable to adjust the mean of the filling process. However, it is able to adjust the standard deviation of the filling process. What would the standard deviation need to be so that 2% of all filled bags weigh more than 52 kilograms?

Practical Management Science
6th Edition
ISBN:9781337406659
Author:WINSTON, Wayne L.
Publisher:WINSTON, Wayne L.
Chapter2: Introduction To Spreadsheet Modeling
Section: Chapter Questions
Problem 20P: Julie James is opening a lemonade stand. She believes the fixed cost per week of running the stand...
icon
Related questions
Question
4. ABC Dog Food Company located in Ottawa sells large bags of dog food to warehouse
clubs. ABC uses an automatic filling process to fill the bags. Weights of the filled bags are
approximately normally distributed with a mean of 50 kilograms and a standard
deviation of 1.25 kilograms.
(a) What is the probability that a filled bag will weigh less than 49.5 kilograms?
(b) What is the probability that a randomly sampled filled bag will weigh between 48.5
and 51 kilograms?
(c) What is the minimum weight a bag of dog food could be and remain in the top 15%
of all bags filled?
(d) ABC is unable to adjust the mean of the filling process. However, it is able to adjust
the standard deviation of the filling process. What would the standard deviation need
to be so that 2% of all filled bags weigh more than 52 kilograms?
Transcribed Image Text:4. ABC Dog Food Company located in Ottawa sells large bags of dog food to warehouse clubs. ABC uses an automatic filling process to fill the bags. Weights of the filled bags are approximately normally distributed with a mean of 50 kilograms and a standard deviation of 1.25 kilograms. (a) What is the probability that a filled bag will weigh less than 49.5 kilograms? (b) What is the probability that a randomly sampled filled bag will weigh between 48.5 and 51 kilograms? (c) What is the minimum weight a bag of dog food could be and remain in the top 15% of all bags filled? (d) ABC is unable to adjust the mean of the filling process. However, it is able to adjust the standard deviation of the filling process. What would the standard deviation need to be so that 2% of all filled bags weigh more than 52 kilograms?
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Practical Management Science
Practical Management Science
Operations Management
ISBN:
9781337406659
Author:
WINSTON, Wayne L.
Publisher:
Cengage,
Operations Management
Operations Management
Operations Management
ISBN:
9781259667473
Author:
William J Stevenson
Publisher:
McGraw-Hill Education
Operations and Supply Chain Management (Mcgraw-hi…
Operations and Supply Chain Management (Mcgraw-hi…
Operations Management
ISBN:
9781259666100
Author:
F. Robert Jacobs, Richard B Chase
Publisher:
McGraw-Hill Education
Business in Action
Business in Action
Operations Management
ISBN:
9780135198100
Author:
BOVEE
Publisher:
PEARSON CO
Purchasing and Supply Chain Management
Purchasing and Supply Chain Management
Operations Management
ISBN:
9781285869681
Author:
Robert M. Monczka, Robert B. Handfield, Larry C. Giunipero, James L. Patterson
Publisher:
Cengage Learning
Production and Operations Analysis, Seventh Editi…
Production and Operations Analysis, Seventh Editi…
Operations Management
ISBN:
9781478623069
Author:
Steven Nahmias, Tava Lennon Olsen
Publisher:
Waveland Press, Inc.