4. a. Determine the size of the Airy disk (in m) found at the center of a 4.00-cm diameter lens, with a focal length of 15.0 cm. Assume the incident light wavelength is the middle of the visible spectrum = 550. nm. b. In observational astronomy, we assume that stars, being so far away, are point sources of light, and that the image of a star in a telescope eyepiece is therefore also a point. Given that the average human near-field resolution is 0.10 mm, does your result in part a justify this assumption? Explain your answer, using the value from part a. c. Assume that the objective lens diffraction limit is the only one that matters on a telescope (actually a good assumption, not justified here). What is the angular size (in radians) of the smallest object that can be truly observed as a disk on the 4.00-cm telescope in part a? Can Jupiter (maximum angular size = 51 arc-seconds) be seen as a disk through this telescope? Note that real telescopes have glass or mirror imperfections which makes even achieving the diffraction limit a challenge.

icon
Related questions
Question
4. a. Determine the size of the Airy disk (in m) found at the center of a 4.00-cm diameter
lens, with a focal length of 15.0 cm. Assume the incident light wavelength is the middle of
the visible spectrum = 550. nm.
b. In observational astronomy, we assume that stars, being so far away, are point sources of
light, and that the image of a star in a telescope eyepiece is therefore also a point. Given
that the average human near-field resolution is 0.10 mm, does your result in part a justify
this assumption? Explain your answer, using the value from part a.
c. Assume that the objective lens diffraction limit is the only one that matters on a
telescope (actually a good assumption, not justified here). What is the angular size (in
radians) of the smallest object that can be truly observed as a disk on the 4.00-cm telescope
in part a? Can Jupiter (maximum angular size = 51 arc-seconds) be seen as a disk through
this telescope? Note that real telescopes have glass or mirror imperfections which makes
even achieving the diffraction limit a challenge.
Transcribed Image Text:4. a. Determine the size of the Airy disk (in m) found at the center of a 4.00-cm diameter lens, with a focal length of 15.0 cm. Assume the incident light wavelength is the middle of the visible spectrum = 550. nm. b. In observational astronomy, we assume that stars, being so far away, are point sources of light, and that the image of a star in a telescope eyepiece is therefore also a point. Given that the average human near-field resolution is 0.10 mm, does your result in part a justify this assumption? Explain your answer, using the value from part a. c. Assume that the objective lens diffraction limit is the only one that matters on a telescope (actually a good assumption, not justified here). What is the angular size (in radians) of the smallest object that can be truly observed as a disk on the 4.00-cm telescope in part a? Can Jupiter (maximum angular size = 51 arc-seconds) be seen as a disk through this telescope? Note that real telescopes have glass or mirror imperfections which makes even achieving the diffraction limit a challenge.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Similar questions