4. a. Determine the size of the Airy disk (in m) found at the center of a 4.00-cm diameter lens, with a focal length of 15.0 cm. Assume the incident light wavelength is the middle of the visible spectrum = 550. nm. b. In observational astronomy, we assume that stars, being so far away, are point sources of light, and that the image of a star in a telescope eyepiece is therefore also a point. Given that the average human near-field resolution is 0.10 mm, does your result in part a justify this assumption? Explain your answer, using the value from part a. c. Assume that the objective lens diffraction limit is the only one that matters on a telescope (actually a good assumption, not justified here). What is the angular size (in radians) of the smallest object that can be truly observed as a disk on the 4.00-cm telescope in part a? Can Jupiter (maximum angular size = 51 arc-seconds) be seen as a disk through this telescope? Note that real telescopes have glass or mirror imperfections which makes even achieving the diffraction limit a challenge.
4. a. Determine the size of the Airy disk (in m) found at the center of a 4.00-cm diameter lens, with a focal length of 15.0 cm. Assume the incident light wavelength is the middle of the visible spectrum = 550. nm. b. In observational astronomy, we assume that stars, being so far away, are point sources of light, and that the image of a star in a telescope eyepiece is therefore also a point. Given that the average human near-field resolution is 0.10 mm, does your result in part a justify this assumption? Explain your answer, using the value from part a. c. Assume that the objective lens diffraction limit is the only one that matters on a telescope (actually a good assumption, not justified here). What is the angular size (in radians) of the smallest object that can be truly observed as a disk on the 4.00-cm telescope in part a? Can Jupiter (maximum angular size = 51 arc-seconds) be seen as a disk through this telescope? Note that real telescopes have glass or mirror imperfections which makes even achieving the diffraction limit a challenge.
Related questions
Question
![4. a. Determine the size of the Airy disk (in m) found at the center of a 4.00-cm diameter
lens, with a focal length of 15.0 cm. Assume the incident light wavelength is the middle of
the visible spectrum = 550. nm.
b. In observational astronomy, we assume that stars, being so far away, are point sources of
light, and that the image of a star in a telescope eyepiece is therefore also a point. Given
that the average human near-field resolution is 0.10 mm, does your result in part a justify
this assumption? Explain your answer, using the value from part a.
c. Assume that the objective lens diffraction limit is the only one that matters on a
telescope (actually a good assumption, not justified here). What is the angular size (in
radians) of the smallest object that can be truly observed as a disk on the 4.00-cm telescope
in part a? Can Jupiter (maximum angular size = 51 arc-seconds) be seen as a disk through
this telescope? Note that real telescopes have glass or mirror imperfections which makes
even achieving the diffraction limit a challenge.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fb5e21146-0fd0-43c7-9c73-456ad19e7af7%2Fccd9838c-15d6-48b3-b7a8-21eda2b2acad%2Fl1m0tp8_processed.png&w=3840&q=75)
Transcribed Image Text:4. a. Determine the size of the Airy disk (in m) found at the center of a 4.00-cm diameter
lens, with a focal length of 15.0 cm. Assume the incident light wavelength is the middle of
the visible spectrum = 550. nm.
b. In observational astronomy, we assume that stars, being so far away, are point sources of
light, and that the image of a star in a telescope eyepiece is therefore also a point. Given
that the average human near-field resolution is 0.10 mm, does your result in part a justify
this assumption? Explain your answer, using the value from part a.
c. Assume that the objective lens diffraction limit is the only one that matters on a
telescope (actually a good assumption, not justified here). What is the angular size (in
radians) of the smallest object that can be truly observed as a disk on the 4.00-cm telescope
in part a? Can Jupiter (maximum angular size = 51 arc-seconds) be seen as a disk through
this telescope? Note that real telescopes have glass or mirror imperfections which makes
even achieving the diffraction limit a challenge.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)