4. A spring with stiffness constant k = 2000 N/m attached to a platform launched a mass of 2kg vertically in the air to some maximum height (measured from the equilibrium point of the spring). The spring was compressed by 0.3 meters before launch. Due to internal friction of the spring, 10 Joules of energy was lost as the spring expanded. How fast was the mass travelling when it was at half of its maximum height? You must use g= 10m/s² for this problem or you will actually find it much more difficult to calculate.

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
4. A spring with stiffness constant k = 2000 N/m attached to a platform launched a mass of 2kg
vertically in the air to some maximum height (measured from the equilibrium point of the
spring). The spring was compressed by 0.3 meters before launch.
Due to internal friction of the spring, 10 Joules of energy was lost as the spring expanded.
How fast was the mass travelling when it was at half of its maximum height?
You must use g= 10m/s? for this problem or you will actually find it much more difficult to
calculate.
Hint: First solve the problem of finding what the maximum height is and then solve the problem
of finding the speed at half of that height.
Transcribed Image Text:4. A spring with stiffness constant k = 2000 N/m attached to a platform launched a mass of 2kg vertically in the air to some maximum height (measured from the equilibrium point of the spring). The spring was compressed by 0.3 meters before launch. Due to internal friction of the spring, 10 Joules of energy was lost as the spring expanded. How fast was the mass travelling when it was at half of its maximum height? You must use g= 10m/s? for this problem or you will actually find it much more difficult to calculate. Hint: First solve the problem of finding what the maximum height is and then solve the problem of finding the speed at half of that height.
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Convection
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY