4. A balloon filled with helium (of density pne = 0.164 kg/m) has a cube shape and rises through the strato- sphere. Air density is given by p(2) = Pa exp(-). where p. = 1.225 kg/m² is the density of air at the sea level, g = 9.81 m/s? is the gravitational acceleration, R = 287.06 J/kg/K is the specific gas constant of air, and T is the air temperature, which is constant in the stratosphere and equal to 217 K (Note that this expression for the atmospheric density is strictly correct only in the isothermal region of the stratosphere. However, please use it for solution to this problem). This balloon is designed so that PHe and its side length h= 30 cm remain constant for all z. The lower surface is located at z and the upper surface at z+h. Derive an expression for the buoyancy force on the balloon and compute the maximum altitude to which the balloon rises in a unit of m. h Не
A balloon filled with helium (of density ρHe = 0.164 kg/m3 ) has a cube shape and rises through the stratosphere. Air density is given by ρ(z) = ρa exp(− gz/ RT), where ρa = 1.225 kg/m3 is the density of air at the sea level, g = 9.81 m/s^2 is the gravitational acceleration, R = 287.06 J/kg/K is the specific gas constant of air, and T is the air temperature, which is constant in the stratosphere and equal to 217 K (Note that this expression for the atmospheric density is strictly correct only in the isothermal region of the stratosphere. However, please use it for solution to this problem). This balloon is designed so that ρHe and its side length h = 30 cm remain constant for all z. The lower surface is located at z and the upper surface at z + h. Derive an expression for the buoyancy force on the balloon and compute the maximum altitude to which the balloon rises in a unit of m.
Trending now
This is a popular solution!
Step by step
Solved in 2 steps