4 What is the inverse of F(x) = 4x-12? |a₁ y = ₁17-12 b.y = = (x+12) (₁y ==—=— (x+12) d.y= = 7 (x-12)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%
Please answer #4
**Question 4:** What is the inverse of \( f(x) = 4x - 12 \)?

**Answer Choices:**
- **a.** \( y = \frac{1}{4x-12} \)
- **b.** \( y = \frac{1}{4}(x + 12) \)
- **c.** \( y = \frac{1}{3}(x + 12) \)
- **d.** \( y = \frac{1}{4}(x - 12) \)

**Explanation:**

To find the inverse of the function \( f(x) = 4x - 12 \), follow these steps:

1. Replace \( f(x) \) with \( y \):
   \[ y = 4x - 12 \]
2. Swap \( x \) and \( y \):
   \[ x = 4y - 12 \]
3. Solve for \( y \):
   \[ x + 12 = 4y \]
   \[ y = \frac{x + 12}{4} \]
   \[ y = \frac{1}{4}(x + 12) \]

Thus, the inverse function is \( y = \frac{1}{4}(x + 12) \). So, the correct answer is **b.**
Transcribed Image Text:**Question 4:** What is the inverse of \( f(x) = 4x - 12 \)? **Answer Choices:** - **a.** \( y = \frac{1}{4x-12} \) - **b.** \( y = \frac{1}{4}(x + 12) \) - **c.** \( y = \frac{1}{3}(x + 12) \) - **d.** \( y = \frac{1}{4}(x - 12) \) **Explanation:** To find the inverse of the function \( f(x) = 4x - 12 \), follow these steps: 1. Replace \( f(x) \) with \( y \): \[ y = 4x - 12 \] 2. Swap \( x \) and \( y \): \[ x = 4y - 12 \] 3. Solve for \( y \): \[ x + 12 = 4y \] \[ y = \frac{x + 12}{4} \] \[ y = \frac{1}{4}(x + 12) \] Thus, the inverse function is \( y = \frac{1}{4}(x + 12) \). So, the correct answer is **b.**
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,