4 Using V; to approximate functions in L²([0, 1)) A function f e V; has the form f (x) = a,21/26(2'x) + a,2'/²¢(2'x – 1) +· … +azi-12'/² p(2'x – (2' – 1)). (7) Since the functions on the right side form an orthonormal set, the coefficients ak are given by the formula ar =< f(x), 2i/² (2°x – k) >= [ f(x) · 2i/²6(2'x – k) dæ (8) Exercise 2 Take the scalar product with 2/2$(2'x – k) on both sides of (7) to verify Formula (8).
4 Using V; to approximate functions in L²([0, 1)) A function f e V; has the form f (x) = a,21/26(2'x) + a,2'/²¢(2'x – 1) +· … +azi-12'/² p(2'x – (2' – 1)). (7) Since the functions on the right side form an orthonormal set, the coefficients ak are given by the formula ar =< f(x), 2i/² (2°x – k) >= [ f(x) · 2i/²6(2'x – k) dæ (8) Exercise 2 Take the scalar product with 2/2$(2'x – k) on both sides of (7) to verify Formula (8).
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Topic Video
Question
Hi, I would like help understanding how to do this problem.
![# 4 Using \( V_j \) to Approximate Functions in \( L^2([0,1]) \)
A function \( f \in V_j \) has the form
\[
f(x) = a_0 2^{j/2} \phi(2^j x) + a_1 2^{j/2} \phi(2^j x - 1) + \cdots + a_{2^j - 1} 2^{j/2} \phi(2^j x - (2^j - 1)).
\]
(Since the functions on the right side form an orthonormal set, the coefficients \( a_k \) are given by the formula)
\[
a_k = \langle f(x), 2^{j/2} \phi(2^j x - k) \rangle = \int_0^1 f(x) \cdot 2^{j/2} \phi(2^j x - k) \, dx.
\]
**Exercise 2**
Take the scalar product with \( 2^{j/2} \phi(2^j x - k) \) on both sides of (7) to verify Formula (8).](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fc11d54a1-f970-40d5-8a22-4b336286a5a0%2Fb2277f34-8648-48b6-8589-a956ac902e0a%2F7mkvs4k_processed.png&w=3840&q=75)
Transcribed Image Text:# 4 Using \( V_j \) to Approximate Functions in \( L^2([0,1]) \)
A function \( f \in V_j \) has the form
\[
f(x) = a_0 2^{j/2} \phi(2^j x) + a_1 2^{j/2} \phi(2^j x - 1) + \cdots + a_{2^j - 1} 2^{j/2} \phi(2^j x - (2^j - 1)).
\]
(Since the functions on the right side form an orthonormal set, the coefficients \( a_k \) are given by the formula)
\[
a_k = \langle f(x), 2^{j/2} \phi(2^j x - k) \rangle = \int_0^1 f(x) \cdot 2^{j/2} \phi(2^j x - k) \, dx.
\]
**Exercise 2**
Take the scalar product with \( 2^{j/2} \phi(2^j x - k) \) on both sides of (7) to verify Formula (8).
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)