4) The matrix exponential e4t is e5t +e-t e5t – e-t' 0.5 e5t e-t est +e-t e5t – e-t e5t +e-t' 0.5 e5t – e-t est +e-t [ ešt +et eõt – e-t] 0.5 ešt +e-t e5t +e-t. ešt + e-t e5t +e-t 0.5 | ešt + e-t ešt +e-t|

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Q4 only
Solve Q4 only
Consider the system of equations below:
dx
2x + 3y
dt
dy
3x + 2y
dt
If we denote Vi and V2 as the eigenvectors corresponding to A1 and A2,
matrix H = [V V2]
3) The Jordan matrix J = H-'AH is given by
4) The matrix exponential eAt is
ešt +e-t est – e-t
0.5
est
e-t est +e-t]
e5t – e-t e5t +e-t
0.5
e5t – e-t est +e-t,
e5t +et ešt – et
0.5
e5t +et est +e-t
e5t +e-t e5t +e-t
0.5
e5t +e-t ešt +e=t
Transcribed Image Text:Solve Q4 only Consider the system of equations below: dx 2x + 3y dt dy 3x + 2y dt If we denote Vi and V2 as the eigenvectors corresponding to A1 and A2, matrix H = [V V2] 3) The Jordan matrix J = H-'AH is given by 4) The matrix exponential eAt is ešt +e-t est – e-t 0.5 est e-t est +e-t] e5t – e-t e5t +e-t 0.5 e5t – e-t est +e-t, e5t +et ešt – et 0.5 e5t +et est +e-t e5t +e-t e5t +e-t 0.5 e5t +e-t ešt +e=t
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,