4 m 8 m A block of mass m slides down from rest on a rough incline of length 8m where the incline makes an angle of 30° with the horizontal. The block comes to rest on the rough horizontal surface after sliding for 4 m. The coefficient of kinetic friction on the incline is 0.30. The coefficient of kinetic friction on the horizontal 30° surface is different from the incline, find this value using two approaches: Using Newton's laws of motion and Kinematics and (i) (ii) Using Work-Kinetic Energy Theorem (Give answer to 2 sig. figs.)
4 m 8 m A block of mass m slides down from rest on a rough incline of length 8m where the incline makes an angle of 30° with the horizontal. The block comes to rest on the rough horizontal surface after sliding for 4 m. The coefficient of kinetic friction on the incline is 0.30. The coefficient of kinetic friction on the horizontal 30° surface is different from the incline, find this value using two approaches: Using Newton's laws of motion and Kinematics and (i) (ii) Using Work-Kinetic Energy Theorem (Give answer to 2 sig. figs.)
College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step 1: Determine the given variables.
VIEWStep 2: Determine the realations between accelerations on the incline and horizontal using kinematics.
VIEWStep 3: Determine the accelerations on the inclined and horizontal surface in terms of sought quantity
VIEWStep 4: Determine the coefficient of friction on the horizontal
VIEWStep 5: Determine the coefficient of friction using work energy theorem
VIEWSolution
VIEWStep by step
Solved in 6 steps with 6 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Recommended textbooks for you
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON