4 and 90° <0 < 180°. Suppose that sin0 = Find the exact values of sin and tan
Trigonometry (11th Edition)
11th Edition
ISBN:9780134217437
Author:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Chapter1: Trigonometric Functions
Section: Chapter Questions
Problem 1RE:
1. Give the measures of the complement and the supplement of an angle measuring 35°.
Related questions
Question
![### Trigonometric Identities and Half-Angle Formulas
#### Problem Statement:
1. Suppose that:
\[ \sin{\theta} = \frac{4}{5} \]
and
\[ 90^\circ < \theta < 180^\circ. \]
2. Find the exact values of:
\[ \sin{\left(\frac{\theta}{2}\right)} \]
and
\[ \tan{\left(\frac{\theta}{2}\right)}. \]
#### Graphical Components:
The provided image includes text and a portion of an equation editor which suggests the visual process of solving the problem using software.
#### Step-by-Step Solution:
To find the values of \(\sin{\left(\frac{\theta}{2}\right)}\) and \(\tan{\left(\frac{\theta}{2}\right)}\), we use the half-angle formulas:
\[ \sin{\left(\frac{\theta}{2}\right)} = \sqrt{\frac{1 - \cos{\theta}}{2}} \]
\[ \tan{\left(\frac{\theta}{2}\right)} = \pm \sqrt{\frac{1 - \cos{\theta}}{1 + \cos{\theta}}},\]
based on the quadrant of \(\theta/2 \).
First, we need to find \(\cos{\theta}\).
Given that:
\[ \sin{\theta} = \frac{4}{5}, \]
we can use the Pythagorean identity:
\[ \sin^2{\theta} + \cos^2{\theta} = 1. \]
\[ \left(\frac{4}{5}\right)^2 + \cos^2{\theta} = 1. \]
\[ \frac{16}{25} + \cos^2{\theta} = 1. \]
\[ \cos^2{\theta} = 1 - \frac{16}{25}. \]
\[ \cos^2{\theta} = \frac{25}{25} - \frac{16}{25}. \]
\[ \cos^2{\theta} = \frac{9}{25}. \]
\[ \cos{\theta} = \pm \frac{3}{5}. \]
For \( 90^\circ < \theta < 180^\circ \), \(\cos{\theta}\) is negative.
\[ \cos{\theta} = -](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Ff0b581ba-098c-432d-a731-9ec346ce3593%2F3a678233-6fa0-4f1f-9d77-32c8f032f967%2F5r3gbuf_processed.png&w=3840&q=75)
Transcribed Image Text:### Trigonometric Identities and Half-Angle Formulas
#### Problem Statement:
1. Suppose that:
\[ \sin{\theta} = \frac{4}{5} \]
and
\[ 90^\circ < \theta < 180^\circ. \]
2. Find the exact values of:
\[ \sin{\left(\frac{\theta}{2}\right)} \]
and
\[ \tan{\left(\frac{\theta}{2}\right)}. \]
#### Graphical Components:
The provided image includes text and a portion of an equation editor which suggests the visual process of solving the problem using software.
#### Step-by-Step Solution:
To find the values of \(\sin{\left(\frac{\theta}{2}\right)}\) and \(\tan{\left(\frac{\theta}{2}\right)}\), we use the half-angle formulas:
\[ \sin{\left(\frac{\theta}{2}\right)} = \sqrt{\frac{1 - \cos{\theta}}{2}} \]
\[ \tan{\left(\frac{\theta}{2}\right)} = \pm \sqrt{\frac{1 - \cos{\theta}}{1 + \cos{\theta}}},\]
based on the quadrant of \(\theta/2 \).
First, we need to find \(\cos{\theta}\).
Given that:
\[ \sin{\theta} = \frac{4}{5}, \]
we can use the Pythagorean identity:
\[ \sin^2{\theta} + \cos^2{\theta} = 1. \]
\[ \left(\frac{4}{5}\right)^2 + \cos^2{\theta} = 1. \]
\[ \frac{16}{25} + \cos^2{\theta} = 1. \]
\[ \cos^2{\theta} = 1 - \frac{16}{25}. \]
\[ \cos^2{\theta} = \frac{25}{25} - \frac{16}{25}. \]
\[ \cos^2{\theta} = \frac{9}{25}. \]
\[ \cos{\theta} = \pm \frac{3}{5}. \]
For \( 90^\circ < \theta < 180^\circ \), \(\cos{\theta}\) is negative.
\[ \cos{\theta} = -
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, trigonometry and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Trigonometry (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780134217437/9780134217437_smallCoverImage.gif)
Trigonometry (11th Edition)
Trigonometry
ISBN:
9780134217437
Author:
Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:
PEARSON
![Trigonometry (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781305652224/9781305652224_smallCoverImage.gif)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781305652224
Author:
Charles P. McKeague, Mark D. Turner
Publisher:
Cengage Learning
![Algebra and Trigonometry](https://www.bartleby.com/isbn_cover_images/9781938168376/9781938168376_smallCoverImage.gif)
![Trigonometry (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780134217437/9780134217437_smallCoverImage.gif)
Trigonometry (11th Edition)
Trigonometry
ISBN:
9780134217437
Author:
Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:
PEARSON
![Trigonometry (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781305652224/9781305652224_smallCoverImage.gif)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781305652224
Author:
Charles P. McKeague, Mark D. Turner
Publisher:
Cengage Learning
![Algebra and Trigonometry](https://www.bartleby.com/isbn_cover_images/9781938168376/9781938168376_smallCoverImage.gif)
![Trigonometry (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781337278461/9781337278461_smallCoverImage.gif)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781337278461
Author:
Ron Larson
Publisher:
Cengage Learning