4) An idempotent element in 5) The ring Z,[x]/< x³ +1 > is: Z;[x]< x³ +1 > is: a) Non-commutative ring a) x with identity b) x? b) Integral Domain c) x² +x+1 c) Field d) 1+x d) None

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
part 5 factor ring
Table 1: Multiplication in Z2[r]/ {r³ + 1)
² + z +1 r² +I r+1 r²+1
7 +z+1 r* +1 r+1 r*+1
² +z+1 r² +1 x²+z z+1
² + x+1 r+1 r+1 r²+I
1
1
1
1
1² +x +1 r² +r+1 r²+x+1 r²+x+1 r²+I+1
+1
* +z +1
² +1
1² +1 r+1 ²+1
z+1 r²+1 r² +x
1² +1 r²+x z+1
z+1
I+1
z+1
2+1
2 +1
z+1
1) The inverse of x is:
2) The value that replaces x is
3) (x² +1)* is equal to
a) x+1
a) x+1
а) х +1
b) x² +1
b) x² +1
b) x2 +1
c) x
c) x
c) x
d) x?
d) x?
d) x?
4) An idempotent element in
5) The ring Z,[x]/< x³ +1 > is:
Z;[x]/<x³ +1 >is:
a) Non-commutative ring
а) х
with identity
b) x?
b) Integral Domain
c) x² +x+1
c) Field
d) 1+x
d) None
Transcribed Image Text:Table 1: Multiplication in Z2[r]/ {r³ + 1) ² + z +1 r² +I r+1 r²+1 7 +z+1 r* +1 r+1 r*+1 ² +z+1 r² +1 x²+z z+1 ² + x+1 r+1 r+1 r²+I 1 1 1 1 1² +x +1 r² +r+1 r²+x+1 r²+x+1 r²+I+1 +1 * +z +1 ² +1 1² +1 r+1 ²+1 z+1 r²+1 r² +x 1² +1 r²+x z+1 z+1 I+1 z+1 2+1 2 +1 z+1 1) The inverse of x is: 2) The value that replaces x is 3) (x² +1)* is equal to a) x+1 a) x+1 а) х +1 b) x² +1 b) x² +1 b) x2 +1 c) x c) x c) x d) x? d) x? d) x? 4) An idempotent element in 5) The ring Z,[x]/< x³ +1 > is: Z;[x]/<x³ +1 >is: a) Non-commutative ring а) х with identity b) x? b) Integral Domain c) x² +x+1 c) Field d) 1+x d) None
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,