4) After landing on an unfamiliar planet, a space explorer constructs a simple pendulum of length 50.0 cm. She finds that the pendulum makes 100 complete swings in 136 s. What is the value of g on this planet? (10.7 m/s?)

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
icon
Concept explainers
Topic Video
Question
### Example Problem: Calculating the Gravitational Acceleration on an Unknown Planet

**Problem Statement:**
- **Context**: After landing on an unfamiliar planet, a space explorer constructs a simple pendulum.
- **Pendulum Length**: 50.0 cm
- **Experiment**: The pendulum makes 100 complete swings in 136 seconds.
- **Objective**: Determine the value of gravitational acceleration (g) on this planet.
- **Reference Answer**: 10.7 m/s²

**Details and Calculation Steps:**

1. **Convert the Pendulum Length**: 
   - Convert the length from centimeters to meters.
   - \( l = 50.0 \, \text{cm} = 0.50 \, \text{m} \)

2. **Calculate the Period (T) of One Swing**:
   - Given 100 complete swings in 136 seconds.
   - The period \( T = \frac{\text{total time}}{\text{number of swings}} = \frac{136 \, \text{s}}{100} = 1.36 \, \text{s} \)

3. **Use the Formula for the Period of a Simple Pendulum**:
   \[
   T = 2 \pi \sqrt{\frac{l}{g}}
   \]
   - Rearrange the formula to solve for \( g \):
   \[
   g = \frac{4\pi^2 l}{T^2}
   \]

4. **Substitute the Given Values**:
   \[
   g = \frac{4\pi^2 \times 0.50 \, \text{m}}{(1.36 \, \text{s})^2}
   \]

5. **Perform the Calculations**:
   - \( 4 \pi^2 \approx 39.478 \)
   - \( (1.36)^2 = 1.8496 \)
   - So,
   \[
   g = \frac{39.478 \times 0.50}{1.8496} \approx 10.7 \, \text{m/s}^2
   \]

**Conclusion:**
- The value of the gravitational acceleration (g) on this unknown planet is approximately \( 10.7 \, \text{m/s}^2 \), confirming the reference answer provided
Transcribed Image Text:### Example Problem: Calculating the Gravitational Acceleration on an Unknown Planet **Problem Statement:** - **Context**: After landing on an unfamiliar planet, a space explorer constructs a simple pendulum. - **Pendulum Length**: 50.0 cm - **Experiment**: The pendulum makes 100 complete swings in 136 seconds. - **Objective**: Determine the value of gravitational acceleration (g) on this planet. - **Reference Answer**: 10.7 m/s² **Details and Calculation Steps:** 1. **Convert the Pendulum Length**: - Convert the length from centimeters to meters. - \( l = 50.0 \, \text{cm} = 0.50 \, \text{m} \) 2. **Calculate the Period (T) of One Swing**: - Given 100 complete swings in 136 seconds. - The period \( T = \frac{\text{total time}}{\text{number of swings}} = \frac{136 \, \text{s}}{100} = 1.36 \, \text{s} \) 3. **Use the Formula for the Period of a Simple Pendulum**: \[ T = 2 \pi \sqrt{\frac{l}{g}} \] - Rearrange the formula to solve for \( g \): \[ g = \frac{4\pi^2 l}{T^2} \] 4. **Substitute the Given Values**: \[ g = \frac{4\pi^2 \times 0.50 \, \text{m}}{(1.36 \, \text{s})^2} \] 5. **Perform the Calculations**: - \( 4 \pi^2 \approx 39.478 \) - \( (1.36)^2 = 1.8496 \) - So, \[ g = \frac{39.478 \times 0.50}{1.8496} \approx 10.7 \, \text{m/s}^2 \] **Conclusion:** - The value of the gravitational acceleration (g) on this unknown planet is approximately \( 10.7 \, \text{m/s}^2 \), confirming the reference answer provided
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Simple Harmonic Motion
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON