4) A 7 gr bullet is fired into a 750 gr block of wood which is at rest on a frictionless table (Isolated System) and attached to a spring with a spring constant of 8000 N/m. The bullet has a velocity of 720 m/sec and is trapped inside the block of wood. a) What is the velocity of the block before the collision? b) What is the velocity of the block/bullet after the collision? c) What is the Amplitude of the resulting SHM? d) What is the kinetic energy after the collision? e) What is the potential energy after the collision? f) What is the mechanical energy after the collision? g) What is the kinetic energy at maximum compression of

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Topic Video
Question

Parts e,f,g

4) A 7 gr bullet is fired into a 750 gr block of wood which is
at rest on a frictionless table (Isolated System) and
attached to a spring with a spring constant of 8000 N/m.
The bullet has a velocity of 720 m/sec and is trapped
inside the block of wood.
a) What is the velocity of the block before the collision?
b) What is the velocity of the block/bullet after the
collision?
c) What is the Amplitude of the resulting SHM?
d) What is the kinetic energy after the collision?
e) What is the potential energy after the collision?
f) What is the mechanical energy after the collision?
g) What is the kinetic energy at maximum compression of
the spring?
h) What is the potential energy at maximum compression
of the spring?
i) What is the mechanical energy at maximum compression
of the spring?
(2
Transcribed Image Text:4) A 7 gr bullet is fired into a 750 gr block of wood which is at rest on a frictionless table (Isolated System) and attached to a spring with a spring constant of 8000 N/m. The bullet has a velocity of 720 m/sec and is trapped inside the block of wood. a) What is the velocity of the block before the collision? b) What is the velocity of the block/bullet after the collision? c) What is the Amplitude of the resulting SHM? d) What is the kinetic energy after the collision? e) What is the potential energy after the collision? f) What is the mechanical energy after the collision? g) What is the kinetic energy at maximum compression of the spring? h) What is the potential energy at maximum compression of the spring? i) What is the mechanical energy at maximum compression of the spring? (2
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
First law of motion
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON