-4 17 -11 -2

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

decide whether or not the given matrix A is diagonalizable. If so, find an invertible matrix S and a diagonal matrix D such that S1AS= D.

-4
17 -11 -2
Transcribed Image Text:-4 17 -11 -2
Expert Solution
Step 1: Given information:

A equals open square brackets table row 1 1 0 row cell negative 4 end cell 5 0 row 17 cell negative 11 end cell cell negative 2 end cell end table close square brackets

The objective is to determine whether or not the given matrix A is diagonalizable. If so, find an invertible matrix S and a diagonal matrix D such that S to the power of negative 1 end exponent A S equals D.


Step 2: Finding eigenvalues

Consider d e t left parenthesis A minus k I right parenthesis equals 0

table attributes columnalign right center left columnspacing 0px end attributes row cell det open parentheses table row cell 1 minus k end cell 1 0 row cell negative 4 end cell cell 5 minus k end cell 0 row 17 cell negative 11 end cell cell negative 2 minus k end cell end table close parentheses end cell equals 0 row cell open parentheses 1 minus k close parentheses open parentheses negative k plus 5 close parentheses open parentheses negative k minus 2 close parentheses minus 1 times open parentheses negative 4 open parentheses negative k minus 2 close parentheses close parentheses plus 0 times open parentheses 17 k minus 41 close parentheses end cell equals 0 row cell negative k cubed plus 4 k squared plus 3 k minus 18 end cell equals 0 row cell negative open parentheses k plus 2 close parentheses open parentheses k minus 3 close parentheses squared end cell equals 0 row k equals cell negative 2 comma thin space k equals 3 end cell row blank blank blank end table

Eigenvalues: negative 2 comma space 3

steps

Step by step

Solved in 4 steps with 13 images

Blurred answer
Knowledge Booster
Matrix Factorization
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,