3x <1 x-4 13. Solve and write solution in interval notation

Algebra and Trigonometry (6th Edition)
6th Edition
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:Robert F. Blitzer
ChapterP: Prerequisites: Fundamental Concepts Of Algebra
Section: Chapter Questions
Problem 1MCCP: In Exercises 1-25, simplify the given expression or perform the indicated operation (and simplify,...
icon
Related questions
Question
**Problem 13:**

**Task:** Solve the inequality and write the solution in interval notation.

\[
\frac{3x}{x-4} < 1
\]

**Solution Steps:**

1. **Subtract 1 from both sides:**

   \[
   \frac{3x}{x-4} - 1 < 0
   \]

2. **Combine into a single fraction:**

   \[
   \frac{3x - (x - 4)}{x-4} < 0
   \]

   Simplify the numerator:

   \[
   \frac{3x - x + 4}{x-4} < 0
   \]

   \[
   \frac{2x + 4}{x-4} < 0
   \]

3. **Factor the expression:**

   \[
   \frac{2(x + 2)}{x-4} < 0
   \]

4. **Find critical points:** Set the numerator and denominator equal to zero.

   - Numerator: \(2(x + 2) = 0 \Rightarrow x = -2\)
   - Denominator: \(x - 4 = 0 \Rightarrow x = 4\)

5. **Test intervals around critical points:**

   Evaluate in intervals \((-\infty, -2)\), \((-2, 4)\), and \((4, \infty)\):

   - Choose \(x = -3\) in \((-\infty, -2)\): \(\frac{2(-3 + 2)}{-3 - 4} = \frac{-2}{-7} > 0\)
   - Choose \(x = 0\) in \((-2, 4)\): \(\frac{2(0 + 2)}{0 - 4} = \frac{4}{-4} < 0\)
   - Choose \(x = 5\) in \((4, \infty)\): \(\frac{2(5 + 2)}{5 - 4} = \frac{14}{1} > 0\)

6. **Solution:** The solution in interval notation, where the inequality is negative, is \((-2, 4)\).

**Conclusion:** The solution to the inequality \(\frac{3
Transcribed Image Text:**Problem 13:** **Task:** Solve the inequality and write the solution in interval notation. \[ \frac{3x}{x-4} < 1 \] **Solution Steps:** 1. **Subtract 1 from both sides:** \[ \frac{3x}{x-4} - 1 < 0 \] 2. **Combine into a single fraction:** \[ \frac{3x - (x - 4)}{x-4} < 0 \] Simplify the numerator: \[ \frac{3x - x + 4}{x-4} < 0 \] \[ \frac{2x + 4}{x-4} < 0 \] 3. **Factor the expression:** \[ \frac{2(x + 2)}{x-4} < 0 \] 4. **Find critical points:** Set the numerator and denominator equal to zero. - Numerator: \(2(x + 2) = 0 \Rightarrow x = -2\) - Denominator: \(x - 4 = 0 \Rightarrow x = 4\) 5. **Test intervals around critical points:** Evaluate in intervals \((-\infty, -2)\), \((-2, 4)\), and \((4, \infty)\): - Choose \(x = -3\) in \((-\infty, -2)\): \(\frac{2(-3 + 2)}{-3 - 4} = \frac{-2}{-7} > 0\) - Choose \(x = 0\) in \((-2, 4)\): \(\frac{2(0 + 2)}{0 - 4} = \frac{4}{-4} < 0\) - Choose \(x = 5\) in \((4, \infty)\): \(\frac{2(5 + 2)}{5 - 4} = \frac{14}{1} > 0\) 6. **Solution:** The solution in interval notation, where the inequality is negative, is \((-2, 4)\). **Conclusion:** The solution to the inequality \(\frac{3
Expert Solution
Step 1

Algebra homework question answer, step 1, image 1

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Algebra and Trigonometry (6th Edition)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
Contemporary Abstract Algebra
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
Linear Algebra: A Modern Introduction
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
Algebra And Trigonometry (11th Edition)
Algebra And Trigonometry (11th Edition)
Algebra
ISBN:
9780135163078
Author:
Michael Sullivan
Publisher:
PEARSON
Introduction to Linear Algebra, Fifth Edition
Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:
9780980232776
Author:
Gilbert Strang
Publisher:
Wellesley-Cambridge Press
College Algebra (Collegiate Math)
College Algebra (Collegiate Math)
Algebra
ISBN:
9780077836344
Author:
Julie Miller, Donna Gerken
Publisher:
McGraw-Hill Education