3A: Analyze Exponential and Logarith Analyze following function and graph it. f(x) = 3(-1) + 1 :(00,00) (1,000) Domain: Range: Asymptote: HA 9=34x XHA n_y=3x Original Function: f(x) = logs(x-1)-2 Describe Transformation: Domain: Range: End Behavior. Os Right (1) f(x) = (and as left Asymptote: End Behavior: xy Newpt 10 TO Original Function: 5 25 2 myz logo 52 Describe Transformation:

Question
**Unit 3: Exponential and Logarithmic Functions**

**3A: Analyze Exponential and Logarithmic Functions**

### Graph Analysis of Exponential and Logarithmic Functions

#### Function 1: \( f(x) = 3 \cdot 4^{x-1} + 1 \)

- **Graph Description:** 
  - The graph shows an exponential curve.
  - Key values (x, y): 
    - (0, 2)
    - (1, 5)

- **Details:**
  - **Domain:** \( (-\infty, \infty) \)
  - **Range:** \( (1, \infty) \)
  - **Asymptote:** Horizontal asymptote at \( y = 1 \)
  - **End Behavior:** 
    - As \( x \to \infty \), \( f(x) \to \infty \)
    - As \( x \to -\infty \), \( f(x) \to 1 \)
  - **Original Function:** \( y = 3 \times 4^x \)

#### Function 2: \( f(x) = \log_5(x-1) - 2 \)

- **Graph Description:** 
  - The graph displays a logarithmic curve.
  - Key values (x, y): 
    - (2, -3)
    - (11, 0)

- **Details:**
  - **Domain:** \( (1, \infty) \)
  - **Range:** \( (-\infty, \infty) \)
  - **Asymptote:** Vertical asymptote at \( x = 1 \)
  - **End Behavior:**
    - As \( x \to 1^+\), \( f(x) \to -\infty \)
    - As \( x \to \infty \), \( f(x) \to \infty \)
  - **Original Function:** \( y = \log_5 x \)

Both graphs require the identification of domain, range, asymptotes, and end behavior, facilitating a deeper understanding of these functions' characteristics.

(Note: Descriptions of transformations in the graphs are not provided in the text.)
Transcribed Image Text:**Unit 3: Exponential and Logarithmic Functions** **3A: Analyze Exponential and Logarithmic Functions** ### Graph Analysis of Exponential and Logarithmic Functions #### Function 1: \( f(x) = 3 \cdot 4^{x-1} + 1 \) - **Graph Description:** - The graph shows an exponential curve. - Key values (x, y): - (0, 2) - (1, 5) - **Details:** - **Domain:** \( (-\infty, \infty) \) - **Range:** \( (1, \infty) \) - **Asymptote:** Horizontal asymptote at \( y = 1 \) - **End Behavior:** - As \( x \to \infty \), \( f(x) \to \infty \) - As \( x \to -\infty \), \( f(x) \to 1 \) - **Original Function:** \( y = 3 \times 4^x \) #### Function 2: \( f(x) = \log_5(x-1) - 2 \) - **Graph Description:** - The graph displays a logarithmic curve. - Key values (x, y): - (2, -3) - (11, 0) - **Details:** - **Domain:** \( (1, \infty) \) - **Range:** \( (-\infty, \infty) \) - **Asymptote:** Vertical asymptote at \( x = 1 \) - **End Behavior:** - As \( x \to 1^+\), \( f(x) \to -\infty \) - As \( x \to \infty \), \( f(x) \to \infty \) - **Original Function:** \( y = \log_5 x \) Both graphs require the identification of domain, range, asymptotes, and end behavior, facilitating a deeper understanding of these functions' characteristics. (Note: Descriptions of transformations in the graphs are not provided in the text.)
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer