39. s A ball of mass m is connected to two rubber bands of length L, each under tension as shown in Figure P15.39. The ball is displaced by a small distance y perpendicular to the length of the rubber bands. Assuming the tension does not change, show that (a) the restoring force is -(2T/L)y and (b) the system exhibits simple harmonic motion with an angular frequency w = √2T/mL.
Simple harmonic motion
Simple harmonic motion is a type of periodic motion in which an object undergoes oscillatory motion. The restoring force exerted by the object exhibiting SHM is proportional to the displacement from the equilibrium position. The force is directed towards the mean position. We see many examples of SHM around us, common ones are the motion of a pendulum, spring and vibration of strings in musical instruments, and so on.
Simple Pendulum
A simple pendulum comprises a heavy mass (called bob) attached to one end of the weightless and flexible string.
Oscillation
In Physics, oscillation means a repetitive motion that happens in a variation with respect to time. There is usually a central value, where the object would be at rest. Additionally, there are two or more positions between which the repetitive motion takes place. In mathematics, oscillations can also be described as vibrations. The most common examples of oscillation that is seen in daily lives include the alternating current (AC) or the motion of a moving pendulum.
Step by step
Solved in 3 steps with 2 images