34 Rings 262 16. Show that the nilpotent elements of a commutative ring form а subring. 17. Show that 0 is the only nilpotent element in an integral domain 18. A ring element a is called an idempotent if a2 only idempotents in an integral domain are 0 and 1 19. Let a and b be idempotents in a commutative ring. Show that each of the following is also an idempotent: ab, a = a. Prove that the 35 3 ab, a + b - ab, 3 a+b-2ab. 20. Show that Z has a nonzero nilpotent element if and only if n is di. visible by the 3 n of some prime. square 21. Let R be the ring of real-valued continuous functions on [-1, 11 Show that R has zero-divisors. = a for all positive inte- 22. Prove that if a is a ring idempotent, then a" gers n. 23. Determine all ring elements that are both nilpotent elements and idempotents. 24. Find a zero-divisor in ZG[i] 25. Find an idempotent in Z,[i] 26. Find all units, zero-divisors, idempotents, and nilpotent elements in Z, Z 27. Determine all elements of a ring that are both units and idempotents. 28. Let R be the set of all real-valued functions defined for all real numbers under function addition and multiplication. = {a + bi | a, b E Z,}. = {a + bi | a, bE Z,}. 1 I1 3 a. Determine all zero-divisors of R. b. Determine all nilpotent elements of R. c. Show that every nonzero element is a zero-divisor or a unit. 29. (Subfield Test) Let F be a field and let K be a subset of F with least two elements . Prove that K is a subfield of F if, for any a, b (b 0) in K, a - b and ab belong to K. 30. Let d be a positive integer. Prove that Q[Vd] ={a + bVdl a, b E Q} is a field. 31. Let R be a ring with unity 1. If the product of any pair of nonzero elements of R is nonzero, prove that ab 1 implies ba = 1. 32. Let R = {0, 2, 4, 6, 8} under addition and multiplication modulo 10. Prove that R is a field. 33. Formulate the appropriate definition of a subdomain (that is, a "sub" integral domain). Let D be an integral domain with unity I. Show that P = {n 1 |nE Z) (that is, all integral multiples of 1) is a subdomain of D. Show that P is contained in every subdomain of D. What can we say about the order of P?
Angles in Circles
Angles within a circle are feasible to create with the help of different properties of the circle such as radii, tangents, and chords. The radius is the distance from the center of the circle to the circumference of the circle. A tangent is a line made perpendicular to the radius through its endpoint placed on the circle as well as the line drawn at right angles to a tangent across the point of contact when the circle passes through the center of the circle. The chord is a line segment with its endpoints on the circle. A secant line or secant is the infinite extension of the chord.
Arcs in Circles
A circular arc is the arc of a circle formed by two distinct points. It is a section or segment of the circumference of a circle. A straight line passing through the center connecting the two distinct ends of the arc is termed a semi-circular arc.
22
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images