34 Rings 262 16. Show that the nilpotent elements of a commutative ring form а subring. 17. Show that 0 is the only nilpotent element in an integral domain 18. A ring element a is called an idempotent if a2 only idempotents in an integral domain are 0 and 1 19. Let a and b be idempotents in a commutative ring. Show that each of the following is also an idempotent: ab, a = a. Prove that the 35 3 ab, a + b - ab, 3 a+b-2ab. 20. Show that Z has a nonzero nilpotent element if and only if n is di. visible by the 3 n of some prime. square 21. Let R be the ring of real-valued continuous functions on [-1, 11 Show that R has zero-divisors. = a for all positive inte- 22. Prove that if a is a ring idempotent, then a" gers n. 23. Determine all ring elements that are both nilpotent elements and idempotents. 24. Find a zero-divisor in ZG[i] 25. Find an idempotent in Z,[i] 26. Find all units, zero-divisors, idempotents, and nilpotent elements in Z, Z 27. Determine all elements of a ring that are both units and idempotents. 28. Let R be the set of all real-valued functions defined for all real numbers under function addition and multiplication. = {a + bi | a, b E Z,}. = {a + bi | a, bE Z,}. 1 I1 3 a. Determine all zero-divisors of R. b. Determine all nilpotent elements of R. c. Show that every nonzero element is a zero-divisor or a unit. 29. (Subfield Test) Let F be a field and let K be a subset of F with least two elements . Prove that K is a subfield of F if, for any a, b (b 0) in K, a - b and ab belong to K. 30. Let d be a positive integer. Prove that Q[Vd] ={a + bVdl a, b E Q} is a field. 31. Let R be a ring with unity 1. If the product of any pair of nonzero elements of R is nonzero, prove that ab 1 implies ba = 1. 32. Let R = {0, 2, 4, 6, 8} under addition and multiplication modulo 10. Prove that R is a field. 33. Formulate the appropriate definition of a subdomain (that is, a "sub" integral domain). Let D be an integral domain with unity I. Show that P = {n 1 |nE Z) (that is, all integral multiples of 1) is a subdomain of D. Show that P is contained in every subdomain of D. What can we say about the order of P?
34 Rings 262 16. Show that the nilpotent elements of a commutative ring form а subring. 17. Show that 0 is the only nilpotent element in an integral domain 18. A ring element a is called an idempotent if a2 only idempotents in an integral domain are 0 and 1 19. Let a and b be idempotents in a commutative ring. Show that each of the following is also an idempotent: ab, a = a. Prove that the 35 3 ab, a + b - ab, 3 a+b-2ab. 20. Show that Z has a nonzero nilpotent element if and only if n is di. visible by the 3 n of some prime. square 21. Let R be the ring of real-valued continuous functions on [-1, 11 Show that R has zero-divisors. = a for all positive inte- 22. Prove that if a is a ring idempotent, then a" gers n. 23. Determine all ring elements that are both nilpotent elements and idempotents. 24. Find a zero-divisor in ZG[i] 25. Find an idempotent in Z,[i] 26. Find all units, zero-divisors, idempotents, and nilpotent elements in Z, Z 27. Determine all elements of a ring that are both units and idempotents. 28. Let R be the set of all real-valued functions defined for all real numbers under function addition and multiplication. = {a + bi | a, b E Z,}. = {a + bi | a, bE Z,}. 1 I1 3 a. Determine all zero-divisors of R. b. Determine all nilpotent elements of R. c. Show that every nonzero element is a zero-divisor or a unit. 29. (Subfield Test) Let F be a field and let K be a subset of F with least two elements . Prove that K is a subfield of F if, for any a, b (b 0) in K, a - b and ab belong to K. 30. Let d be a positive integer. Prove that Q[Vd] ={a + bVdl a, b E Q} is a field. 31. Let R be a ring with unity 1. If the product of any pair of nonzero elements of R is nonzero, prove that ab 1 implies ba = 1. 32. Let R = {0, 2, 4, 6, 8} under addition and multiplication modulo 10. Prove that R is a field. 33. Formulate the appropriate definition of a subdomain (that is, a "sub" integral domain). Let D be an integral domain with unity I. Show that P = {n 1 |nE Z) (that is, all integral multiples of 1) is a subdomain of D. Show that P is contained in every subdomain of D. What can we say about the order of P?
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Concept explainers
Contingency Table
A contingency table can be defined as the visual representation of the relationship between two or more categorical variables that can be evaluated and registered. It is a categorical version of the scatterplot, which is used to investigate the linear relationship between two variables. A contingency table is indeed a type of frequency distribution table that displays two variables at the same time.
Binomial Distribution
Binomial is an algebraic expression of the sum or the difference of two terms. Before knowing about binomial distribution, we must know about the binomial theorem.
Topic Video
Question
18
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,