312 Problem 7.10 A square loop (side a) is mounted on a vertical shaft and rotated at angular velocity w (Fig. 7.19). A uniform magnetic field B points to the right. Find the E(t) for this alternating current generator. Problem 7.11 A square loop is cut out of a thick sheet of aluminum. It is then placed so that the top portion is in a uniform magnetic field B, and is allowed to fall under gravity (Fig. 7.20). (In the diagram, shading indicates the field region; B points into Chapter 7 Electrodynamics the page.) If the magnetic field is 1 T (a pretty standard laboratory field), find the terminal velocity of the loop (in m/s). Find the velocity of the loop as a function of time. How long does it take (in seconds) to reach, say, 90% of the terminal velocity? What would happen if you cut a tiny slit in the ring, breaking the circuit? [Note: The dimensions of the loop cancel out; determine the actual numbers, in the units indicated.] B a a FIGURE 7.19 FIGURE 7.20

University Physics Volume 2
18th Edition
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Chapter13: Electromagnetic Induction
Section: Chapter Questions
Problem 69AP: The conducting rod shown in the accompanying figure moves along parallel metal rails that are 25-cm...
icon
Related questions
Question

7.10

312
Problem 7.10 A square loop (side a) is mounted on a vertical shaft and rotated at
angular velocity w (Fig. 7.19). A uniform magnetic field B points to the right. Find
the E(t) for this alternating current generator.
Problem 7.11 A square loop is cut out of a thick sheet of aluminum. It is then placed
so that the top portion is in a uniform magnetic field B, and is allowed to fall under
gravity (Fig. 7.20). (In the diagram, shading indicates the field region; B points into
Chapter 7 Electrodynamics
the page.) If the magnetic field is 1 T (a pretty standard laboratory field), find the
terminal velocity of the loop (in m/s). Find the velocity of the loop as a function of
time. How long does it take (in seconds) to reach, say, 90% of the terminal velocity?
What would happen if you cut a tiny slit in the ring, breaking the circuit? [Note:
The dimensions of the loop cancel out; determine the actual numbers, in the units
indicated.]
B
a
a
FIGURE 7.19
FIGURE 7.20
Transcribed Image Text:312 Problem 7.10 A square loop (side a) is mounted on a vertical shaft and rotated at angular velocity w (Fig. 7.19). A uniform magnetic field B points to the right. Find the E(t) for this alternating current generator. Problem 7.11 A square loop is cut out of a thick sheet of aluminum. It is then placed so that the top portion is in a uniform magnetic field B, and is allowed to fall under gravity (Fig. 7.20). (In the diagram, shading indicates the field region; B points into Chapter 7 Electrodynamics the page.) If the magnetic field is 1 T (a pretty standard laboratory field), find the terminal velocity of the loop (in m/s). Find the velocity of the loop as a function of time. How long does it take (in seconds) to reach, say, 90% of the terminal velocity? What would happen if you cut a tiny slit in the ring, breaking the circuit? [Note: The dimensions of the loop cancel out; determine the actual numbers, in the units indicated.] B a a FIGURE 7.19 FIGURE 7.20
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
University Physics Volume 2
University Physics Volume 2
Physics
ISBN:
9781938168161
Author:
OpenStax
Publisher:
OpenStax
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning