31. X1 3x3 = -2 - 3x, + X2 2x3 %D - 2x, + 2x, + X3 : 4 %3D

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Solve the system using either Gaussian elimination with back-substitution or Gauss-Jordan elimination
Transcription of Systems of Equations:

**31.**
\[
\begin{align*}
x_1 - 3x_3 &= -2 \\
3x_1 + x_2 - 2x_3 &= 5 \\
2x_1 + 2x_2 + x_3 &= 4 \\
\end{align*}
\]

**32.**
\[
\begin{align*}
3x_1 - 2x_2 + 3x_3 &= 22 \\
3x_2 - x_3 &= 24 \\
6x_1 - 7x_2 &= -22 \\
\end{align*}
\]

**33.**
\[
\begin{align*}
2x_1 + x_2 + 3x_3 &= 3 \\
4x_1 - 3x_2 + 7x_3 &= 5 \\
8x_1 - 9x_2 + 15x_3 &= 10 \\
\end{align*}
\]

**34.**
\[
\begin{align*}
x_1 + x_2 - 5x_3 &= 3 \\
x_1 - 2x_3 &= 1 \\
2x_1 - x_2 - x_3 &= 0 \\
\end{align*}
\]

**35.**
\[
\begin{align*}
4x + 12y - 7z - 20w &= 22 \\
3x + 9y - 5z - 28w &= 30 \\
\end{align*}
\]

**36.**
\[
\begin{align*}
x + 2y + z &= 8 \\
-3x - 6y - 3z &= -21 \\
\end{align*}
\]

These systems of equations consist of multiple linear equations with variables \(x_1, x_2, x_3\), \(x, y, z,\) and \(w\). Each system represents a different mathematical problem to solve for the values of the variables involved.
Transcribed Image Text:Transcription of Systems of Equations: **31.** \[ \begin{align*} x_1 - 3x_3 &= -2 \\ 3x_1 + x_2 - 2x_3 &= 5 \\ 2x_1 + 2x_2 + x_3 &= 4 \\ \end{align*} \] **32.** \[ \begin{align*} 3x_1 - 2x_2 + 3x_3 &= 22 \\ 3x_2 - x_3 &= 24 \\ 6x_1 - 7x_2 &= -22 \\ \end{align*} \] **33.** \[ \begin{align*} 2x_1 + x_2 + 3x_3 &= 3 \\ 4x_1 - 3x_2 + 7x_3 &= 5 \\ 8x_1 - 9x_2 + 15x_3 &= 10 \\ \end{align*} \] **34.** \[ \begin{align*} x_1 + x_2 - 5x_3 &= 3 \\ x_1 - 2x_3 &= 1 \\ 2x_1 - x_2 - x_3 &= 0 \\ \end{align*} \] **35.** \[ \begin{align*} 4x + 12y - 7z - 20w &= 22 \\ 3x + 9y - 5z - 28w &= 30 \\ \end{align*} \] **36.** \[ \begin{align*} x + 2y + z &= 8 \\ -3x - 6y - 3z &= -21 \\ \end{align*} \] These systems of equations consist of multiple linear equations with variables \(x_1, x_2, x_3\), \(x, y, z,\) and \(w\). Each system represents a different mathematical problem to solve for the values of the variables involved.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,