Algebra and Trigonometry (6th Edition)
6th Edition
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:Robert F. Blitzer
ChapterP: Prerequisites: Fundamental Concepts Of Algebra
Section: Chapter Questions
Problem 1MCCP: In Exercises 1-25, simplify the given expression or perform the indicated operation (and simplify,...
Related questions
Question
100%
31 on paper please
![FIGURE Ex-29
30. What is the sum of all radial vectors of a regular n-side
gon? (See Figure Ex-29.)
Working with Proofs
31. Prove parts (a), (c), and (d) of Theorem 3.1.1.
32. Prove parts (e)-(h) of Theorem 3.1.1.
33. Prove parts (a)-(c) of Theorem 3.1.2.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fccdd90b5-cd41-4340-8a36-15b102c9ba73%2F4353527b-6517-411b-988c-8196b113b852%2Fcxdi1h_processed.jpeg&w=3840&q=75)
Transcribed Image Text:FIGURE Ex-29
30. What is the sum of all radial vectors of a regular n-side
gon? (See Figure Ex-29.)
Working with Proofs
31. Prove parts (a), (c), and (d) of Theorem 3.1.1.
32. Prove parts (e)-(h) of Theorem 3.1.1.
33. Prove parts (a)-(c) of Theorem 3.1.2.
![EXAMPLE 3 | Algebraic Operations Using Components
If v = (1, -3, 2) and w = (4, 2, 1), then
v+w=(5,-1, 3),
2v = (2,-6,4)
-w = (-4,-2, -1),
v-w=v+(-w) = (-3, -5,1)
The following theorem summarizes the most important properties of ve
tions.
Theorem 3.1.1
If u, v, and w are vectors in R", and if k and m are scalars, then:
(a) u + v=v+u
(b) (u+v)+w=u+ (v + w)
(c) u+0=0+u=u
(d) u + (-u) = 0
(e) k(u + v) = ku + kv
(f) (k+m)u = ku + mu
(g) k(mu) = (km)u
(h) lu= u
We will prove part (b) and leave some of the other proofs as exercises.
Proof (b) Let u = (U₁, U₂, ..., Un), V = (U₁, U₂, ..., Un), and w = (W1, W2,...,U
(u + v) + w = ((U₁, U₂,..., Un) + (V₁, V₂,..., Un)) + (W₁, W₂,..., wn)
[Vect
=
= (U₁ + V₁, U₂+U2,..., Un + Un) + (W₁, W2,..., wn)
= ((U₁ + v₁) + w₁, (u₂ + V₂) + W2,...,
.., (un + vn) + wn)
[Vect
[Regr
= (u₁ + (v₁ + w₁), U₂ + (V₂ + W₂),..., Un + (Un+wn))](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fccdd90b5-cd41-4340-8a36-15b102c9ba73%2F4353527b-6517-411b-988c-8196b113b852%2F3r8g37c_processed.jpeg&w=3840&q=75)
Transcribed Image Text:EXAMPLE 3 | Algebraic Operations Using Components
If v = (1, -3, 2) and w = (4, 2, 1), then
v+w=(5,-1, 3),
2v = (2,-6,4)
-w = (-4,-2, -1),
v-w=v+(-w) = (-3, -5,1)
The following theorem summarizes the most important properties of ve
tions.
Theorem 3.1.1
If u, v, and w are vectors in R", and if k and m are scalars, then:
(a) u + v=v+u
(b) (u+v)+w=u+ (v + w)
(c) u+0=0+u=u
(d) u + (-u) = 0
(e) k(u + v) = ku + kv
(f) (k+m)u = ku + mu
(g) k(mu) = (km)u
(h) lu= u
We will prove part (b) and leave some of the other proofs as exercises.
Proof (b) Let u = (U₁, U₂, ..., Un), V = (U₁, U₂, ..., Un), and w = (W1, W2,...,U
(u + v) + w = ((U₁, U₂,..., Un) + (V₁, V₂,..., Un)) + (W₁, W₂,..., wn)
[Vect
=
= (U₁ + V₁, U₂+U2,..., Un + Un) + (W₁, W2,..., wn)
= ((U₁ + v₁) + w₁, (u₂ + V₂) + W2,...,
.., (un + vn) + wn)
[Vect
[Regr
= (u₁ + (v₁ + w₁), U₂ + (V₂ + W₂),..., Un + (Un+wn))
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Algebra and Trigonometry (6th Edition)](https://www.bartleby.com/isbn_cover_images/9780134463216/9780134463216_smallCoverImage.gif)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
![Contemporary Abstract Algebra](https://www.bartleby.com/isbn_cover_images/9781305657960/9781305657960_smallCoverImage.gif)
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
![Linear Algebra: A Modern Introduction](https://www.bartleby.com/isbn_cover_images/9781285463247/9781285463247_smallCoverImage.gif)
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
![Algebra and Trigonometry (6th Edition)](https://www.bartleby.com/isbn_cover_images/9780134463216/9780134463216_smallCoverImage.gif)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
![Contemporary Abstract Algebra](https://www.bartleby.com/isbn_cover_images/9781305657960/9781305657960_smallCoverImage.gif)
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
![Linear Algebra: A Modern Introduction](https://www.bartleby.com/isbn_cover_images/9781285463247/9781285463247_smallCoverImage.gif)
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
![Algebra And Trigonometry (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780135163078/9780135163078_smallCoverImage.gif)
Algebra And Trigonometry (11th Edition)
Algebra
ISBN:
9780135163078
Author:
Michael Sullivan
Publisher:
PEARSON
![Introduction to Linear Algebra, Fifth Edition](https://www.bartleby.com/isbn_cover_images/9780980232776/9780980232776_smallCoverImage.gif)
Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:
9780980232776
Author:
Gilbert Strang
Publisher:
Wellesley-Cambridge Press
![College Algebra (Collegiate Math)](https://www.bartleby.com/isbn_cover_images/9780077836344/9780077836344_smallCoverImage.gif)
College Algebra (Collegiate Math)
Algebra
ISBN:
9780077836344
Author:
Julie Miller, Donna Gerken
Publisher:
McGraw-Hill Education