306 3. ³ [34] $[6] 5. 1 -1 3 7. 9. 11. -6-1 2 320 -14 -2 5 3-1-1 -12 0 5 4-2-1 24 4 1-1 3 4. 13-16 9-11 6. 8. 2 2 33 -2 -2 -1 10. -7 4-3 83 3 32 16 13 12. 6441 461 4 416 4 1446 Chapter 4 The Eigenvalue Problem Exercises 20-23 illustrate the Cayley-Hamilton theo- rem, which states that if p(t) is the characteristic poly- nomial for A, then p(A) is the zero matrix. (As in Ex- ercise 18, p(A) is the (n × n) matrix that comes from substituting A fort in p(t).) In Exercises 20-23, verify that p(A) = O for the given matrix A. 20. A in Exercise 3 21. A in Exercise 4 22. A in Exercise 9 23. A in Exercise 13 with Ax = λx, x = 0.] 16. Prove property (c) of Theorem 11. 17. Complete the proof of property (a) of Theorem 11. 18. Let q(t) = 1³-21²-1 + 2; and for any (n = n) matrix H, define the matrix polynomial q (H) by q(H) = H³ - 2H² H +21, where I is the (nx n) identity matrix. a) Prove that if λ is an eigenvalue of H, then the number q (2) is an eigenvalue of the matrix q(H). [Hint: Suppose that Hx = λx, where x = 0, and use Theorem 11 to evaluate q (H)x.] b) Use part a) to calculate the eigenvalues of q (A) and q (B), where A and B are from Exercises 7 and 8, respectively. 19. With q (1) as in Exercise 18, verify that q(C) is the zero matrix, where C is from Exercise 9. (Note that q(t) is the characteristic polynomial for C. See Ex- ercises 20-23.) -an-1-an-2 ... a₁-ao 1 0 0 0 0 1 0 0 00 0 0 1 0 A = a) For n = 2 and for n = 3, show that det(AtI) = (-1)"q(t).

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Linear algebra: please solve q21 correctly and handwritten 

306
3.
³ [34]
$[6]
5.
1 -1
3
7.
9.
11.
-6-1 2
320
-14 -2 5
3-1-1
-12 0 5
4 -2 -1
24 4
1-1
3
4. 13-16
9-11
6.
8.
2 2
33
12.
-2-2
10. -7 4-3
83 3
32-16 13
6441
461
4164
14 46
4
Chapter 4 The Eigenvalue Problem
Exercises 20-23 illustrate the Cayley-Hamilton theo-
rem, which states that if p(t) is the characteristic poly-
nomial for A, then p(A) is the zero matrix. (As in Ex-
ercise 18, p(A) is the (n × n) matrix that comes from
substituting A fort in p(t).) In Exercises 20-23, verify
that p(A) = O for the given matrix A.
20. A in Exercise 3
21. A in Exercise 4
23. A in Exercise 13
22. A in Exercise 9
with Ax = λx, x = 0.]
16. Prove property (c) of Theorem 11.
17. Complete the proof of property (a) of Theorem 11.
18. Let q(t) = t³ - 21² - t + 2; and for any (nx n)
matrix H, define the matrix polynomial q (H) by
q(H) = H³ - 2H² – H+21,
where I is the (n × n) identity matrix.
a) Prove that if λ is an eigenvalue of H, then the
number q (2) is an eigenvalue of the matrix
q(H). [Hint: Suppose that Hx = λx, where
x 0, and use Theorem 11 to evaluate q (H)x.]
b) Use part a) to calculate the eigenvalues of q (A)
and q (B), where A and B are from Exercises 7
and 8, respectively.
19. With q (t) as in Exercise 18, verify that q(C) is the
zero matrix, where C is from Exercise 9. (Note that
q(t) is the characteristic polynomial for C. See Ex-
ercises 20-23.)
A =
-an-1-an-2 ... a₁-ao
0
0
1
0
0
0
1
0
0
0
1
0
a) For n = 2 and for n = 3, show that
det(A - tI) = (-1)" q(t).
Transcribed Image Text:306 3. ³ [34] $[6] 5. 1 -1 3 7. 9. 11. -6-1 2 320 -14 -2 5 3-1-1 -12 0 5 4 -2 -1 24 4 1-1 3 4. 13-16 9-11 6. 8. 2 2 33 12. -2-2 10. -7 4-3 83 3 32-16 13 6441 461 4164 14 46 4 Chapter 4 The Eigenvalue Problem Exercises 20-23 illustrate the Cayley-Hamilton theo- rem, which states that if p(t) is the characteristic poly- nomial for A, then p(A) is the zero matrix. (As in Ex- ercise 18, p(A) is the (n × n) matrix that comes from substituting A fort in p(t).) In Exercises 20-23, verify that p(A) = O for the given matrix A. 20. A in Exercise 3 21. A in Exercise 4 23. A in Exercise 13 22. A in Exercise 9 with Ax = λx, x = 0.] 16. Prove property (c) of Theorem 11. 17. Complete the proof of property (a) of Theorem 11. 18. Let q(t) = t³ - 21² - t + 2; and for any (nx n) matrix H, define the matrix polynomial q (H) by q(H) = H³ - 2H² – H+21, where I is the (n × n) identity matrix. a) Prove that if λ is an eigenvalue of H, then the number q (2) is an eigenvalue of the matrix q(H). [Hint: Suppose that Hx = λx, where x 0, and use Theorem 11 to evaluate q (H)x.] b) Use part a) to calculate the eigenvalues of q (A) and q (B), where A and B are from Exercises 7 and 8, respectively. 19. With q (t) as in Exercise 18, verify that q(C) is the zero matrix, where C is from Exercise 9. (Note that q(t) is the characteristic polynomial for C. See Ex- ercises 20-23.) A = -an-1-an-2 ... a₁-ao 0 0 1 0 0 0 1 0 0 0 1 0 a) For n = 2 and for n = 3, show that det(A - tI) = (-1)" q(t).
Expert Solution
steps

Step by step

Solved in 4 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,