30. Find a linear differential operator (of lowest order) that annihilates the given function: f(x) = x³ + x³ cos x - 3x sin 3x (A) Dª(D² + 1)³(D² +9)² (B) D¹(D²+1)¹(D² + 9)² (C) D¹(D² - 1)³(D² +9)² (D) D¹(D²+1)³(D² - 9)²
30. Find a linear differential operator (of lowest order) that annihilates the given function: f(x) = x³ + x³ cos x - 3x sin 3x (A) Dª(D² + 1)³(D² +9)² (B) D¹(D²+1)¹(D² + 9)² (C) D¹(D² - 1)³(D² +9)² (D) D¹(D²+1)³(D² - 9)²
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question

Transcribed Image Text:30. Find a linear differential operator (of lowest order) that annihilates the given function:
f(x) = x³ + x³ cos x - 3x sin 3x
(A) D¹(D² +1)³(D² +9)²
(B) D¹(D²+1)4(D² + 9)²
31. Evaluate W(1-x, x, x²)
(A) 2
(B) 2x
(A) m = 0,-1,1
(B) m = 0,1 (multiplicity 2)
(C) D¹(D² - 1)³ (D² +9)²
(D) D¹(D²+1)³(D² - 9)²
32. The roots of the auxiliary equation corresponding to the associated homogeneous equation of the
DE y" + 2y" - y' = 10 are
(C) -2.x
(D) -2
(A) Yc=c₁e + C₂€¯² + c3
(B) Yc = C₁e + C₂xE² + c3
(C) m = 0,-1 (multiplicity 2)
(D) m = 1,-1 (multiplicity 2)
33. The complementary solution, ye, of the equation y" + 2y" - y = 10 is
(C) Y₁ = ₁₂e + c₂e² + c3
(D) Ye=c₁e
+ c₂xе¯² + c3
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images

Recommended textbooks for you

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,

