3.5 PROBLEMS Probleme drough 10, state whether the given functiona a maximam value or a minimum value for boch) on the prival. Suggestion: Begin by sketching a graph of the Action/ MEN ods a low 0.8 10-1-1-1.1 $): (1.1) & fl-21: a.4 1 fu)-P+1 -1.11 &00(0,00) mang eds $./00- 1700-10- [2.31 (0, 1) f(x)=2x+1 -1.1) 1 4.500 √x 6 f(x)-5-¹ (-1,2) 12038-21 [-2.3] 1-3 (-1.5) (0.11 (10.11 x(1-x) *(1-x) Problema 11 through 40, find the maximum and minimum var attained by the given function on the indicated closed imal 28. fox)=2x-: p. 29. fox)=5+(1-3: (1.5) 30. f(x)=13+11+1-11: 1-221 31. f0-50-105²+72 10.11 32. f00-2x+1.41 / 100-10.3 34 fu)- 10.31 70-2-1-1.8 37. f00-1-1 -1.1 38. f(x)=x√√4-2² 10.2) 39. fx=x2-x 40. f(x): (1.3) 10.41 ly closely W 41. Suppose that f(x) Ar+Bis a linear function A0. Explain why the maximum and minimum the end
3.5 PROBLEMS Probleme drough 10, state whether the given functiona a maximam value or a minimum value for boch) on the prival. Suggestion: Begin by sketching a graph of the Action/ MEN ods a low 0.8 10-1-1-1.1 $): (1.1) & fl-21: a.4 1 fu)-P+1 -1.11 &00(0,00) mang eds $./00- 1700-10- [2.31 (0, 1) f(x)=2x+1 -1.1) 1 4.500 √x 6 f(x)-5-¹ (-1,2) 12038-21 [-2.3] 1-3 (-1.5) (0.11 (10.11 x(1-x) *(1-x) Problema 11 through 40, find the maximum and minimum var attained by the given function on the indicated closed imal 28. fox)=2x-: p. 29. fox)=5+(1-3: (1.5) 30. f(x)=13+11+1-11: 1-221 31. f0-50-105²+72 10.11 32. f00-2x+1.41 / 100-10.3 34 fu)- 10.31 70-2-1-1.8 37. f00-1-1 -1.1 38. f(x)=x√√4-2² 10.2) 39. fx=x2-x 40. f(x): (1.3) 10.41 ly closely W 41. Suppose that f(x) Ar+Bis a linear function A0. Explain why the maximum and minimum the end
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Q20 and Q37 needed
These are easy questions please solve both in the order to get positive feedback
![3.5 PROBLEMS
Problems through 10, state whether the given funcion
man value or a minimum value for boch) on the
prival. Suggestion Begin by sketching a graph of the
tion)
Lf00-1-1-1.1)
$): (1.1)
& fl-21: a.4
1 fu)-P+1 -1.11
&/0)
d
low
0.8
"
ang
e of
ng m
ahmad
ained
(a.)
f
or a loc
at fiat
here.
a, b
ne crit
1
*(1-x)
1
*(1-x)
(a,b)
$/0)=
f-4-3
13 A-4-¹:
[1.3]
14 fx²+3 [0.5]
iga)=-1¹: 1-1,4
1 16x)=²+4+7: [-3.0]
17. f)=2-3 [-2.4]
gix)=2x-9¹+12x; [0.4]
IN AX)=*+= [1,4]
18. f(x)=
[2.31
(0, 1)
imal
11 )=3-2: [-2.3]
1-1.5]
f(x)=2x+1 -1.1)
4. 500-
(0.11
6 f(x)-5-¹ (-1,2)
In Problems 11 through 40, find the maximum and minimum
ained by the given function on the indicated closed
16
20)²+(1.3)
21 fu)-3-2x: [-1.1]
22 fu)-²-4x+3; (0, 2)
21 fu)-5-12x-9¹: [-1.1)
2x)=2²¹-4x+7; [0.2]
28/3)=²-3³-9x+5: [-2.4]
28. fu)-2x-: .
29. fux)=5+(1-3: (1.5)
30. f(x)=15+11+1-11-221
31. f0-50-105²+72 113
32. f00-2x+1.41
1800-
34 fu)-
1-1
35. fux)-(-2,5)
fo-2-1-1.8
f)+ [-1.2]
37. fu)-3-5: 1-2.21
10.31
(0.3)
37. f(x)=√1-1 -1.1
38. f(x)=x√√4-2² 10.21
39. fx=x2-x (1.3)
40. f(x)=x²-x: (0.4)
closely
41. Suppose that for) Ar+iss linear function
A0. Explain why the maximum and minimum
fon a closed interval ja, bj must occur at the enc
the interval
42. Suppose that f is continuous on (e. b) and dif
on (a, b) and that f(x) is never zero at any poi
Explain why the maximum and minimum value
occur at the endpoints of the interval (a, b).
43 Explain why every real number is a critical
greatest integer function fix)-[]
44. Prove that every quadratic function
f(x) = ax +he+c (C
has exactly one critical point on the real lim
45. Explain why the cubic polynomial function
f(x) = ar+he+c+d
can have either two, one, or so critical po
Produce examples that illustrate each on
46. Define f(x) to be the distance from a te
What are the critical points of f](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Ffbfb5a78-2b03-4613-890c-0754521d637e%2F191c8051-c40b-4eeb-8728-6d5c0eab8dcf%2Fx7jbl8u_processed.jpeg&w=3840&q=75)
Transcribed Image Text:3.5 PROBLEMS
Problems through 10, state whether the given funcion
man value or a minimum value for boch) on the
prival. Suggestion Begin by sketching a graph of the
tion)
Lf00-1-1-1.1)
$): (1.1)
& fl-21: a.4
1 fu)-P+1 -1.11
&/0)
d
low
0.8
"
ang
e of
ng m
ahmad
ained
(a.)
f
or a loc
at fiat
here.
a, b
ne crit
1
*(1-x)
1
*(1-x)
(a,b)
$/0)=
f-4-3
13 A-4-¹:
[1.3]
14 fx²+3 [0.5]
iga)=-1¹: 1-1,4
1 16x)=²+4+7: [-3.0]
17. f)=2-3 [-2.4]
gix)=2x-9¹+12x; [0.4]
IN AX)=*+= [1,4]
18. f(x)=
[2.31
(0, 1)
imal
11 )=3-2: [-2.3]
1-1.5]
f(x)=2x+1 -1.1)
4. 500-
(0.11
6 f(x)-5-¹ (-1,2)
In Problems 11 through 40, find the maximum and minimum
ained by the given function on the indicated closed
16
20)²+(1.3)
21 fu)-3-2x: [-1.1]
22 fu)-²-4x+3; (0, 2)
21 fu)-5-12x-9¹: [-1.1)
2x)=2²¹-4x+7; [0.2]
28/3)=²-3³-9x+5: [-2.4]
28. fu)-2x-: .
29. fux)=5+(1-3: (1.5)
30. f(x)=15+11+1-11-221
31. f0-50-105²+72 113
32. f00-2x+1.41
1800-
34 fu)-
1-1
35. fux)-(-2,5)
fo-2-1-1.8
f)+ [-1.2]
37. fu)-3-5: 1-2.21
10.31
(0.3)
37. f(x)=√1-1 -1.1
38. f(x)=x√√4-2² 10.21
39. fx=x2-x (1.3)
40. f(x)=x²-x: (0.4)
closely
41. Suppose that for) Ar+iss linear function
A0. Explain why the maximum and minimum
fon a closed interval ja, bj must occur at the enc
the interval
42. Suppose that f is continuous on (e. b) and dif
on (a, b) and that f(x) is never zero at any poi
Explain why the maximum and minimum value
occur at the endpoints of the interval (a, b).
43 Explain why every real number is a critical
greatest integer function fix)-[]
44. Prove that every quadratic function
f(x) = ax +he+c (C
has exactly one critical point on the real lim
45. Explain why the cubic polynomial function
f(x) = ar+he+c+d
can have either two, one, or so critical po
Produce examples that illustrate each on
46. Define f(x) to be the distance from a te
What are the critical points of f
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images

Recommended textbooks for you

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,

