3.5 PROBLEMS In Problems I through 10, state whether the given function at tains a maximum value or a minimum value (or both) on the given interval (Suggestion: Begin by sketching a graph of the function/ 1. f(x) 1-x; -1.1) $f(x)=x: (1.1) 5. f(x)=x-21: (1.4) 7. f(x)+1; -1.1] & f(x)= (-00,00) 1 9. f(x) = x(1-x) 10. f(x) = 1. ZOTO this lo S=0.4 Calcula factor like a horizontal line (as in Fig. 3.5.1 in this manner? ke the c zontal ta Ordinate of esponding point with m alue attainet 1 2 f(x)=2x+1: (1.1) 4. 700) = (0.1) 6. f(x)=5-²: 1-1,2) [2,3] (0,1) *(1-x) In Problems 11 through 40, find the maximum and minimum values attained by the given function on the indicated closed interval 11. f(x) = 3x-2; [-2.3] 12 f(x)=4-3x: [-1.5] 13, h(x)=4-x²¹: [1.3] 14. f(x)=x²+3; [0.5] 1 g(x)=(x-1): [-1.4] 16. h(x)=x² + 4x +7: [-3.0] 17. f(x)=x²-3x: [-2,4] 18 g(x)=2r³-9x² + 12x: (0.4] 19. h(x)=x+ [1.4] 16 [1.3] 21. f(x)=3-2x; [-1.1] 22. f(x)=x²-4x+3; [0,2] 23. f(x)=5-12x-9x²; [-1,1] 24. f(x)=2x² - 4x +7; [0.2] 25. f(x)=x²-3x²-9x+5; [-2.4] ed interval (a. 20. f(x)=x² + = (if any) of f. minimum nor a ka ossibility that fis ferentiable there xtremum in (a, b) m, but only one ca local minimum, and in (a.b). 28. f(x)-(2x-3): [2.2] 29. fux)-5+17-3x: (1.5) 30. f(x)=x+11+x-11: (-2,23 31. f(x)=50-105x²+72x: (0.1) 32. fux)=2x+ (1.4) 33, 70x)= (0.3) 26. f(x)=r³+x: [-1.2] 27. f(x)=3x³-5x³; [-2,2] *+1 34. f(x)=110,3) 1-x 35. f(x)= 56. fox)-2- -1.8) 37. f(x)=x√1-¹: [-1.1] 38. f(x)=x√/4-¹ (0.21 39. f(x)=x2-x) (1.3) 40. f(x)=x2-x² (0.4) 41. Suppose that fix) Ax+ B is a linear function and that A 0. Explain why the maximum and minimum values of fon a closed interval (a, b) must occur at the endpoints of the interval. (-2,5) 42. Suppose that is continuous on [a, b] and differentiable on (a, b) and that f'(x) is never zero at any point of (a, b). Explain why the maximum and minimum values of f must occur at the endpoints of the interval (a, b). 43. Explain why every real number is a critical point of the greatest integer function f(x)=[x]. 44. Prove that every quadratic function f(x) = ax²+bx+c (0) has exactly one critical point on the real line. 45. Explain why the cubic polynomial function f(x) = ax + bx² +cx+d (a*0) can have either two, one, or no critical points on the real line. Produce examples that illustrate each of the three cases. 46. Define f(x) to be the distance from x to the nearest integ What are the critical points of f
3.5 PROBLEMS In Problems I through 10, state whether the given function at tains a maximum value or a minimum value (or both) on the given interval (Suggestion: Begin by sketching a graph of the function/ 1. f(x) 1-x; -1.1) $f(x)=x: (1.1) 5. f(x)=x-21: (1.4) 7. f(x)+1; -1.1] & f(x)= (-00,00) 1 9. f(x) = x(1-x) 10. f(x) = 1. ZOTO this lo S=0.4 Calcula factor like a horizontal line (as in Fig. 3.5.1 in this manner? ke the c zontal ta Ordinate of esponding point with m alue attainet 1 2 f(x)=2x+1: (1.1) 4. 700) = (0.1) 6. f(x)=5-²: 1-1,2) [2,3] (0,1) *(1-x) In Problems 11 through 40, find the maximum and minimum values attained by the given function on the indicated closed interval 11. f(x) = 3x-2; [-2.3] 12 f(x)=4-3x: [-1.5] 13, h(x)=4-x²¹: [1.3] 14. f(x)=x²+3; [0.5] 1 g(x)=(x-1): [-1.4] 16. h(x)=x² + 4x +7: [-3.0] 17. f(x)=x²-3x: [-2,4] 18 g(x)=2r³-9x² + 12x: (0.4] 19. h(x)=x+ [1.4] 16 [1.3] 21. f(x)=3-2x; [-1.1] 22. f(x)=x²-4x+3; [0,2] 23. f(x)=5-12x-9x²; [-1,1] 24. f(x)=2x² - 4x +7; [0.2] 25. f(x)=x²-3x²-9x+5; [-2.4] ed interval (a. 20. f(x)=x² + = (if any) of f. minimum nor a ka ossibility that fis ferentiable there xtremum in (a, b) m, but only one ca local minimum, and in (a.b). 28. f(x)-(2x-3): [2.2] 29. fux)-5+17-3x: (1.5) 30. f(x)=x+11+x-11: (-2,23 31. f(x)=50-105x²+72x: (0.1) 32. fux)=2x+ (1.4) 33, 70x)= (0.3) 26. f(x)=r³+x: [-1.2] 27. f(x)=3x³-5x³; [-2,2] *+1 34. f(x)=110,3) 1-x 35. f(x)= 56. fox)-2- -1.8) 37. f(x)=x√1-¹: [-1.1] 38. f(x)=x√/4-¹ (0.21 39. f(x)=x2-x) (1.3) 40. f(x)=x2-x² (0.4) 41. Suppose that fix) Ax+ B is a linear function and that A 0. Explain why the maximum and minimum values of fon a closed interval (a, b) must occur at the endpoints of the interval. (-2,5) 42. Suppose that is continuous on [a, b] and differentiable on (a, b) and that f'(x) is never zero at any point of (a, b). Explain why the maximum and minimum values of f must occur at the endpoints of the interval (a, b). 43. Explain why every real number is a critical point of the greatest integer function f(x)=[x]. 44. Prove that every quadratic function f(x) = ax²+bx+c (0) has exactly one critical point on the real line. 45. Explain why the cubic polynomial function f(x) = ax + bx² +cx+d (a*0) can have either two, one, or no critical points on the real line. Produce examples that illustrate each of the three cases. 46. Define f(x) to be the distance from x to the nearest integ What are the critical points of f
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Q21, Q26 and Q35 needed
These are easy questions please solve both in the order to get positive feedback
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 4 steps with 4 images
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,