3.3 Determine the Laplace transform of each of the following functions by applying the properties given in Tables 3-1 and 3-2. (a) x1(t) = 4te u(t) (b) x2(t) = 10 cos(12t+60°) u(t) (c) x3(1)=12e-3(1-4) u(t-4)

Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
icon
Related questions
icon
Concept explainers
Question
3.3 Determine the Laplace transform of each of the following
functions by applying the properties given in Tables 3-1 and
3-2.
(a) x1(t) = 4te u(t)
(b) x2(t) = 10 cos(12t+60°) u(t)
(c) x3(1)=12e-3(1-4) u(t-4)
Transcribed Image Text:3.3 Determine the Laplace transform of each of the following functions by applying the properties given in Tables 3-1 and 3-2. (a) x1(t) = 4te u(t) (b) x2(t) = 10 cos(12t+60°) u(t) (c) x3(1)=12e-3(1-4) u(t-4)
Table 3-1: Properties of the Laplace transform for causal functions; i.e., x(t) = 0 for t < 0.
Property
X(s) = L[x(t)]
x(t)
1. Multiplication by constant
K x(t)
K X(s)
2. Linearity
K₁ x1(t) + K2 x2(1)
K₁ X1 (s) + K2 X2(s)
3. Time scaling
x(at), a>0
X
4. Time shift
5. Frequency shift
x(t T)u(t T)
e-ar x(t)
e-Ts X(s)
dx
6. Time 1st derivative
x'
dt
d²x
7. Time 2nd derivative
x"
dt²
X(sa)
s X(s)x(0)
s²X(s) - sx (0)
-x'(07)
8. Time integral
0-
9. Frequency derivative
jxw's ar
( )
x(t') dt' →
t x(t)
X(s)
S
d
X(s) = -X'(s)
∞
ds
x(t)
10. Frequency integral
t
[ X(s') ds'
11. Initial value
x(0+)
=
lim s X(s)
S-∞
12. Final value
lim x(t)=x(0)
=
lim s X(s)
x+1
0<s
13. Convolution
x1(t) * x2(t)
X1(s) X2(s)
Table 3-2: Examples of Laplace transform pairs. Note that x(t) = 0 for <0 and 7 ≥ 0.
Laplace Transform Pairs
1
la
2
2a
3
За
4
4a
x(1)
X(s) = C[x(1)]
8(1)→> 1
8(1-T)
u(t)
u(1-T)
1
e-at u(t)
s+a
-Ts
e-at-T)u(t-
-T)
+a
I u(1)
(1-T)u(1-T)
5
1² u(1)
1
6
te-at u(t)
(s+a)²
2
7
e-at u(t)
(s+a)3
8
"--at u(t)
(n-1)!
(s+a)"
WO
9
10
11
sin(@ot) u(t)
s sin wo cos
sin(wol +) u(t)
S
cos(wol) u(t)
12
cos(wol +6) u(t)
s² + w
scos 6-wo sin
$2
+w₁₂
13
e-at sin(wol) u(t)
14
e-at cos(wol) u(t)
->
15
2e-at cos(bt-0) u(t)
15a
e-ar
cos(bt-0) u(t)
21"-1
16
16
(n-1)!
e-at cos(bt-8) u(1)
(s+a+jb)"
WO
(s + a)²+w
s+a
(s+a)²+w²
eje
+
e-jo
s+a+jb
(sa) cos +b sin
s+a-jb
(s+a)²+b²
ejo
+
e-jo
(s+a-jb)n
Transcribed Image Text:Table 3-1: Properties of the Laplace transform for causal functions; i.e., x(t) = 0 for t < 0. Property X(s) = L[x(t)] x(t) 1. Multiplication by constant K x(t) K X(s) 2. Linearity K₁ x1(t) + K2 x2(1) K₁ X1 (s) + K2 X2(s) 3. Time scaling x(at), a>0 X 4. Time shift 5. Frequency shift x(t T)u(t T) e-ar x(t) e-Ts X(s) dx 6. Time 1st derivative x' dt d²x 7. Time 2nd derivative x" dt² X(sa) s X(s)x(0) s²X(s) - sx (0) -x'(07) 8. Time integral 0- 9. Frequency derivative jxw's ar ( ) x(t') dt' → t x(t) X(s) S d X(s) = -X'(s) ∞ ds x(t) 10. Frequency integral t [ X(s') ds' 11. Initial value x(0+) = lim s X(s) S-∞ 12. Final value lim x(t)=x(0) = lim s X(s) x+1 0<s 13. Convolution x1(t) * x2(t) X1(s) X2(s) Table 3-2: Examples of Laplace transform pairs. Note that x(t) = 0 for <0 and 7 ≥ 0. Laplace Transform Pairs 1 la 2 2a 3 За 4 4a x(1) X(s) = C[x(1)] 8(1)→> 1 8(1-T) u(t) u(1-T) 1 e-at u(t) s+a -Ts e-at-T)u(t- -T) +a I u(1) (1-T)u(1-T) 5 1² u(1) 1 6 te-at u(t) (s+a)² 2 7 e-at u(t) (s+a)3 8 "--at u(t) (n-1)! (s+a)" WO 9 10 11 sin(@ot) u(t) s sin wo cos sin(wol +) u(t) S cos(wol) u(t) 12 cos(wol +6) u(t) s² + w scos 6-wo sin $2 +w₁₂ 13 e-at sin(wol) u(t) 14 e-at cos(wol) u(t) -> 15 2e-at cos(bt-0) u(t) 15a e-ar cos(bt-0) u(t) 21"-1 16 16 (n-1)! e-at cos(bt-8) u(1) (s+a+jb)" WO (s + a)²+w s+a (s+a)²+w² eje + e-jo s+a+jb (sa) cos +b sin s+a-jb (s+a)²+b² ejo + e-jo (s+a-jb)n
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Laplace Transform of Signal
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Introductory Circuit Analysis (13th Edition)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
Delmar's Standard Textbook Of Electricity
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
Fundamentals of Electric Circuits
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education
Electric Circuits. (11th Edition)
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON
Engineering Electromagnetics
Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,