3.29. A simple structure is found to vibrate as a single degree of freedom system. The spring constant determined using static testing is found to be 2500 N/m. The mass of the structure is 3 kg. By using a simple vibration test, the ratio of successive amplitudes is found to be 1.1. Determine the structural damping coefficient and the equivalent viscous damping coefficient. Determine also the energy loss per cycle for an amplitude of 0.08 m.
3.29. A simple structure is found to vibrate as a single degree of freedom system. The spring constant determined using static testing is found to be 2500 N/m. The mass of the structure is 3 kg. By using a simple vibration test, the ratio of successive amplitudes is found to be 1.1. Determine the structural damping coefficient and the equivalent viscous damping coefficient. Determine also the energy loss per cycle for an amplitude of 0.08 m.
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question

Transcribed Image Text:3.29. A simple structure is found to vibrate as a single degree of freedom system.
The spring constant determined using static testing is found to be 2500 N/m.
The mass of the structure is 3 kg. By using a simple vibration test, the ratio of
successive amplitudes is found to be 1.1. Determine the structural damping
coefficient and the equivalent viscous damping coefficient. Determine also
the energy loss per cycle for an amplitude of 0.08 m.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images

Recommended textbooks for you

Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education

Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY